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Getting Started

*  “Optimization Toolbox Product Description” on page 1-2
+ “Solve a Constrained Nonlinear Problem” on page 1-3

+ “Set Up a Linear Program, Solver-Based” on page 1-12

* “Set Up a Linear Program, Problem-Based” on page 1-21



1 Getting Started

Optimization Toolbox Product Description

Solve linear, quadratic, integer, and nonlinear optimization problems

Optimization Toolbox provides functions for finding parameters that minimize or
maximize objectives while satisfying constraints. The toolbox includes solvers for linear
programming (LP), mixed-integer linear programming (MILP), quadratic programming
(QP), nonlinear programming (NLP), constrained linear least squares, nonlinear least
squares, and nonlinear equations. You can define your optimization problem with
functions and matrices or by specifying variable expressions that reflect the underlying
mathematics.

You can use the toolbox solvers to find optimal solutions to continuous and discrete
problems, perform tradeoff analyses, and incorporate optimization methods into
algorithms and applications. The toolbox lets you perform design optimization tasks,
including parameter estimation, component selection, and parameter tuning. It can be
used to find optimal solutions in applications such as portfolio optimization, resource
allocation, and production planning and scheduling.

Key Features

*  Nonlinear and multiobjective optimization of smooth constrained and unconstrained
problems

+ Solvers for nonlinear least squares, constrained linear least squares, data fitting, and
nonlinear equations

*  Quadratic programming (QP) and linear programming (LP)
+  Mixed-integer linear programming (MILP)

*  Optimization modeling tools

* Graphical monitoring of optimization progress

*  Gradient estimation acceleration (with Parallel Computing Toolbox™)
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Solve a Constrained Nonlinear Problem

In this section...

“Problem Formulation: Rosenbrock's Function” on page 1-3
“Defining the Problem in Toolbox Syntax” on page 1-4

“Running the Optimization” on page 1-6

“Interpreting the Result” on page 1-10

Problem Formulation: Rosenbrock's Function
Consider the problem of minimizing Rosenbrock's function
2\2 2
F(2)=100(xy a7 | +(1-x)?,
over the unit disk, i.e., the disk of radius 1 centered at the origin. In other words, find x

that minimizes the function f(x) over the set x% + x22 < 1. This problem is a minimization
of a nonlinear function with a nonlinear constraint.

Note Rosenbrock's function is a standard test function in optimization. It has a unique
minimum value of 0 attained at the point (1,1). Finding the minimum is a challenge for
some algorithms since it has a shallow minimum inside a deeply curved valley.

Here are two views of Rosenbrock's function in the unit disk. The vertical axis is log-
scaled; in other words, the plot shows log(1+f(x)). Contour lines lie beneath the surface

plot.
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Rosenbrock's function, log-scaled: two views.

1-4

The function f(x) is called the objective function. This is the function you wish to

minimize. The inequality x% +x% <1 is called a constraint. Constraints limit the set of x
over which you may search for a minimum. You can have any number of constraints,
which are inequalities or equations.

All Optimization Toolbox optimization functions minimize an objective function. To
maximize a function f, apply an optimization routine to minimize —f. For more details
about maximizing, see “Maximizing an Objective” on page 2-39.

Defining the Problem in Toolbox Syntax

To use Optimization Toolbox software, you need to
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1  Define your objective function in the MATLAB® language, as a function file or
anonymous function. This example will use a function file.

2 Define your constraint(s) as a separate file or anonymous function.
Function File for Objective Function

A function file is a text file containing MATLAB commands with the extension .m. Create
a new function file in any text editor, or use the built-in MATLAB Editor as follows:

1 At the command line enter:

edit rosenbrock

The MATLAB Editor opens.
2 In the editor enter:

function £ = rosenbrock (x)
f = 100*(x(2) - x(1)"2)"2 + (1 - x(1))"2;

3 Save the file by selecting File > Save.
File for Constraint Function

Constraint functions must be formulated so that they are in the form c(x) <0 or

ceq(x) = 0. The constraint x% + x% <1 needs to be reformulated as x% + x22 —1<0 in order
to have the correct syntax.

Furthermore, toolbox functions that accept nonlinear constraints need to have both

equality and inequality constraints defined. In this example there is only an inequality
constraint, so you must pass an empty array [] as the equality constraint function ceq.

With these considerations in mind, write a function file for the nonlinear constraint:

1 Create a file named unitdisk.m containing the following code:

function [c, ceq] = unitdisk(x)
c=x(1)"2 + x(2)"2 - 1;
ceq = [ ];

2 Save the file unitdisk.m.
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Running the Optimization

There are two ways to run the optimization:

+  Using the “Optimization app” on page 1-6

+ Using command line functions; see “Minimizing at the Command Line” on page 1-9.

Optimization app

Note The Optimization app warns that it will be removed in a future release, because it
is based on technology that is maintained minimally.

1  Start the Optimization app by typing optimtool at the command line.

1-6



Solve a Constrained Nonlinear Problem

-
4\ Optimization Tool

MNenlinear constraint function:
Derivatives: Approximated by solver  +

Run solver and view results

Constraint tolerance: @ Use default: 1e-6
O Specify:
SQP constraint tolerance: @) Use default: 1e-6

Specify:

Unboundedness threshold: @ Use default: -1e20

©) Specify:

[ =l Function value check

[T Error if user-supplied function returns Inf, NaN or ¢

[ El User-supplied derivatives

Current iteration: Clear Results
AW

Final point:

a

4 L

Validate user-supplied derivatives
Hessian sparsity pattern: @) Use default: sparse(one

Specify:

Hessian multiply function: @) Use default: No multipl

Specify:

ter Aarincatniac

4| m

M

1 | C

File  Help
Problem Setup and Results Options Quick Reference <
r = = — 7 [ El Stopping criteria - ol
Solver: fmincon - Constrained nonlinear minimizati... v ¥y
) . - 1 || Max iterations: @ Use default: 1000 fmincon Solver
Algorithm: | Interior point )
Problem ©) Speify: Flnd.a minimum ofa con.slralne.d nopllnea_r
) . multivariable function using the interior-poil
Objective function: v Max function evaluations: @ Use default: 3000 _ )
r . = || [Click to expand the section below correspc
Derivatives: | Approximated by solver = @ Specity: | byour task.
Start point: Xtolerance: @ Use default: 1e-10 Problem Setup and Results
» .
Constraints: © Specify Solver and Algorithm
Linear inequalities: A b _ ||| Problem
Function tolerance: @ Use default: 1e-6 )
Linear equalities: Aeq: beq: i > Constraints
© Specify: )
Bounds: L Upper: ¥ Run solver and view results

Options
+ Stopping criteria

m

» Function value check
¥ User-supplied derivatives

b Approximated derivatives

-

Hessian

-

Algorithm settings

-

Inner iteration stopping criteria

-

Plot functions

-

Output function

-

Display to command window

Suggested Mext Steps

B Overview of Next Steps

B When the Solver Fails
F When the Solver Might Have Succeedec
F When the Solver Succeeds

More Information -

< i | +

For more information about this tool, see “Optimization App” on page 5-2.

The default Solver fmincon - Constrained nonlinear minimizationis

selected. This solver is appropriate for this problem, since Rosenbrock's function is

nonlinear, and the problem has a constraint. For more information about choosing a

solver, see “Optimization Decision Table” on page 2-6.

In the Algorithm pop-up menu choose Interior point, which is the default.
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4  For Objective function enter @rosenbrock. The @ character indicates that this is
a function handle (MATLAB) of the file rosenbrock.m.

5 For Start point enter [0 0]. This is the initial point where fmincon begins its
search for a minimum.

6 For Nonlinear constraint function enter Gunitdisk, the function handle of
unitdisk.m.

Your Problem Setup and Results pane should match this figure.
Problem Setup and Results

Solver: fmincon - Constrained nonlinear minimization -
Algorithrm: | Interior point -
Problem

Objective function: | @rosenbrock -
Derivatives: :Appruximated by solver -

Start point: [0a]

Constraints:

Linear inequalities: A b
Linear equalities: Aeq: beg:
Bounds: Lower: Upper

Monlinear constraint function: | @unitdisk

Derivatives: Approximated by solver -

7 In the Options pane (center bottom), select iterative in the Level of display pop-
up menu. (If you don't see the option, click ¥ Display to command window.) This
shows the progress of fmincon in the command window.

= Display to command window

Level of display: _Eiterative

[
g’
[] Show diagnostics

1-8
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8 Click Start under Run solver and view results.

Run salver and view results

Start k Pause Stop
Current iteration: Clear Results

The following message appears in the box below the Start button:
Optimization running.

Objective function value: 0.045674824758137236

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

Your objective function value may differ slightly, depending on your computer system
and version of Optimization Toolbox software.

The message tells you that:

* The search for a constrained optimum ended because the derivative of the objective
function is nearly 0 in directions allowed by the constraint.

* The constraint is satisfied to the requisite accuracy.

“Exit Flags and Exit Messages” on page 3-3 discusses exit messages such as these.

The minimizer x appears under Final point.

Final point:

1 2
0.736| 0.618

Minimizing at the Command Line

You can run the same optimization from the command line, as follows.

1  Create an options structure to choose iterative display and the interior-point
algorithm:

1-9
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options = optimoptions (@fmincon, ...
'Display', 'iter', 'Algorithm', 'interior-point');

2 Run the fmincon solver with the options structure, reporting both the location x of
the minimizer, and value fval attained by the objective function:

[x,fval] = fmincon (@rosenbrock, [0 0], ...
(1,01,01,01,[1,[]1,@unitdisk,options)

The six sets of empty brackets represent optional constraints that are not being used
in this example. See the fmincon function reference pages for the syntax.

MATLAB outputs a table of iterations, and the results of the optimization:
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint tolerance.

x =

0.7864 0.6177

fval =
0.0457

The message tells you that the search for a constrained optimum ended because the
derivative of the objective function is nearly O in directions allowed by the constraint, and
that the constraint is satisfied to the requisite accuracy. Several phrases in the message
contain links that give you more information about the terms used in the message. For
more details about these links, see “Enhanced Exit Messages” on page 3-5.

Interpreting the Result

The iteration table in the command window shows how MATLAB searched for the
minimum value of Rosenbrock's function in the unit disk. This table is the same whether
you use Optimization app or the command line. MATLAB reports the minimization as
follows:

First-order Norm of

Iter F-count f(x) Feasibility optimality step
0 3 1.000000e+00 0.000e+00 2.000e+00

1 13 7.753537e-01 0.000e+00 6.250e+00 1.768e-01

2 18 6.519648e-01 0.000e+00 9.048e+00 1.679%e-01

3 21 5.543209e-01 0.000e+00 8.033e+00 1.203e-01

4 24 2.985207e-01 0.000e+00 1.790e+00 9.328e-02

5 27 2.653799%e-01 0.000e+00 2.788e+00 5.723e-02

6 30 1.897216e-01 0.000e+00 2.311e+00 1.147e-01
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7 33 1.513701e-01 0.000e+00 9.706e-01 5.764e-02

8 36 1.153330e-01 0.000e+00 1.127e+00 8.169e-02

9 39 1.198058e-01 0.000e+00 1.000e-01 1.522e-02
10 42 8.910052e-02 0.000e+00 8.378e-01 8.301e-02
11 45 6.771960e-02 0.000e+00 1.365e+00 7.149e-02
12 48 6.437664e-02 0.000e+00 1.146e-01 5.701e-03
13 51 6.329037e-02 0.000e+00 1.883e-02 3.774e-03
14 54 5.161934e-02 0.000e+00 3.016e-01 4.464e-02
15 57 4.964194e-02 0.000e+00 7.913e-02 7.894e-03
16 60 4.955404e-02 0.000e+00 5.462e-03 4.185e-04
17 63 4.954839%9e-02 0.000e+00 3.993e-03 2.208e-05
18 66 4.658289e-02 0.000e+00 1.318e-02 1.255e-02
19 69 4.647011e-02 0.000e+00 8.006e-04 4.940e-04
20 72 4.569141e-02 0.000e+00 3.136e-03 3.379e-03
21 75 4.568281e-02 0.000e+00 6.439%9e-05 3.974e-05
22 78 4.568281e-02 0.000e+00 8.000e-06 1.083e-07
23 81 4.567641e-02 0.000e+00 1.601e-06 2.793e-05
24 84 4.567482e-02 0.000e+00 2.062e-08 6.916e-06

This table might differ from yours depending on toolbox version and computing platform.
The following description applies to the table as displayed.

* The first column, labeled Iter, is the iteration number from 0 to 24. fmincon took 24
iterations to converge.

* The second column, labeled F-count, reports the cumulative number of times
Rosenbrock's function was evaluated. The final row shows an F-count of 84,
indicating that fmincon evaluated Rosenbrock's function 84 times in the process of
finding a minimum.

* The third column, labeled f (x), displays the value of the objective function. The final
value, 0.04567482, is the minimum that is reported in the Optimization app Run
solver and view results box, and at the end of the exit message in the command
window.

* The fourth column, Feasibility, is O for all iterations. This column shows the value
of the constraint function unitdisk at each iteration where the constraint is positive.
Since the value of unitdisk was negative in all iterations, every iteration satisfied
the constraint.

The other columns of the iteration table are described in “Iterative Display” on page 3-
15.
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Set Up a Linear Program, Solver-Based

In this section...

“Convert a Problem to Solver Form” on page 1-12
“Model Description” on page 1-12

“Solution Method” on page 1-14

“Bibliography” on page 1-20

Convert a Problem to Solver Form

This example shows how to convert a problem from mathematical form into Optimization
Toolbox solver syntax using the solver-based approach. While the problem is a linear
program, the techniques apply to all solvers.

The variables and expressions in the problem represent a model of operating a chemical
plant, from an example in Edgar and Himmelblau [1]. There are two videos that describe
the problem.

* Mathematical Modeling with Optimization, Part 1 shows the problem in pictorial
form. It shows how to generate the mathematical expressions of “Model Description’
on page 1-12 from the picture.

i

+  Optimization Modeling, Part 2: Converting to Solver Form describes how to convert
these mathematical expressions into Optimization Toolbox solver syntax. This video
shows how to solve the problem, and how to interpret the results.

The remainder of this example is concerned solely with transforming the problem to
solver syntax. The example closely follows the video Optimization Modeling, Part 2:
Converting to Solver Form. The main difference between the video and the example is
that this example shows how to use named variables, or index variables, which are
similar to hash keys. This difference is in “Combine Variables Into One Vector” on page
1-15.

Model Description

The video Mathematical Modeling with Optimization, Part 1 suggests that one way to
convert a problem into mathematical form is to:
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Get an overall idea of the problem

Identify the goal (maximizing or minimizing something)
Identify (name) variables

Identify constraints

Determine which variables you can control

Specify all quantities in mathematical notation

Check the model for completeness and correctness

NO AR WN =

For the meaning of the variables in this section, see the video Mathematical Modeling
with Optimization, Part 1.

The optimization problem is to minimize the objective function, subject to all the other
expressions as constraints.

The objective function is:
0.002614 HPS + 0.0239 PP + 0.009825 EP.
The constraints are:

2500 <P1 <6250

I1<192,000

C<62,000

I1 - HE1<132,000

I1 = LE1 + HE1l + C

1359.8 I1 = 1267.8 HE1l + 1251.4 LE1 + 192 C + 3413 Pl
3000<P2<9000

I2<244,000

LE2<142,000

I2 = LE2 + HE2

1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2
HPS = I1 + I2 + BF1

HPS = C + MPS + LPS

LPS = LE1 + LE2 + BF2

MPS = HEl + HE2 + BF1l - BF2

Pl + P2 + PP>24,550

EP + PP>12,000

MPS>271,536

LPS>100,623

All variables are positive.
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Solution Method

To solve the optimization problem, take the following steps.

“Choose a Solver” on page 1-14

“Combine Variables Into One Vector” on page 1-15
“Write Bound Constraints” on page 1-16

“Write Linear Inequality Constraints” on page 1-17
“Write Linear Equality Constraints” on page 1-18
“Write the Objective” on page 1-19

“Solve the Problem with linprog” on page 1-19

® N o ot

“Examine the Solution” on page 1-20

The steps are also shown in the video Optimization Modeling, Part 2: Converting to
Solver Form.

Choose a Solver

To find the appropriate solver for this problem, consult the “Optimization Decision Table”
on page 2-6. The table asks you to categorize your problem by type of objective function
and types of constraints. For this problem, the objective function is linear, and the
constraints are linear. The decision table recommends using the 1inprog solver.

As you see in “Problems Handled by Optimization Toolbox Functions” on page 2-16 or
the 1inprog function reference page, the 1inprog solver solves problems of the form

A-x<b,
min f Ty such that Aeq - x = begq,
X
Ib< x<ub.

+  fTx means a row vector of constants f multiplying a column vector of variables x. In
other words,

ffx = f)x(1) + f(2)x(2) + ... + f(n)x(n),

where n is the length of f.
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* A x < brepresents linear inequalities. A is a k-by-n matrix, where % is the number of
inequalities and n is the number of variables (size of x). b is a vector of length k. For
more information, see “Linear Inequality Constraints” on page 2-46.

*  Aeq x = beq represents linear equalities. Aeq is an m-by-n matrix, where m is the
number of equalities and n is the number of variables (size of x). beq is a vector of
length m. For more information, see “Linear Equality Constraints” on page 2-47.

* Ib<x<ub means each element in the vector x must be greater than the
corresponding element of /b, and must be smaller than the corresponding element of
ub. For more information, see “Bound Constraints” on page 2-44.

The syntax of the 1inprog solver, as shown in its function reference page, is
[x fval] = linprog(f,A,b,Aeq,beqg,1lb,ub);

The inputs to the 1inprog solver are the matrices and vectors in “Equation 1-1” on page
1-14.

Combine Variables Into One Vector

There are 16 variables in the equations of “Model Description” on page 1-12. Put these
variables into one vector. The name of the vector of variables is x in “Equation 1-1” on
page 1-14. Decide on an order, and construct the components of x out of the variables.

The following code constructs the vector using a cell array of names for the variables.

variables = {'I1','I2','HEl','HE2','LEl','LE2','C','BF1l', ...
"BF2', 'HPS', 'MPS','LPS','P1','P2','PP','EP'};

N = length(variables);

% create variables for indexing

for v = 1:N
eval ([variables{v},"' = ', num2str(v),';"'1);

end

Executing these commands creates the following named variables in your workspace:
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Workspace

variables Ix16 cell

These named variables represent index numbers for the components of x. You do not
have to create named variables. The video Optimization Modeling, Part 2: Converting to
Solver Form shows how to solve the problem simply using the index numbers of the
components of x.

Write Bound Constraints

There are four variables with lower bounds, and six with upper bounds in the equations
of “Model Description” on page 1-12. The lower bounds:

P1>2500
P2 > 3000
MPS >271, 536
LPS>100, 623.

Also, all the variables are positive, which means they have a lower bound of zero.
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Create the lower bound vector 1b as a vector of 0, then add the four other lower bounds.

1lb = zeros(size(variables));
l1b([P1,P2,MPS,LPS]) = ...
[2500,3000,271536,100623];

The variables with upper bounds are:

P1 <6250

P2 <9000
I1<192,000
I12<244,000
C<62,000
LE2 <142000.

Create the upper bound vector as a vector of Inf, then add the six upper bounds.

ub = Inf(size(variables));
ub([P1,P2,I1,I2,C,LE2]) = ...
[6250,9000,192000,244000,62000,142000];

Write Linear Inequality Constraints
There are three linear inequalities in the equations of “Model Description” on page 1-12:

I1 - HE1<132,000
EP + PP>12,000
P1 + P2 + PP>24,550.

In order to have the equations in the form A x<b, put all the variables on the left side of
the inequality. All these equations already have that form. Ensure that each inequality is
in “less than” form by multiplying through by —1 wherever appropriate:

I1 - HE1<132,000
-EP - PP<-12,000
-P1 - P2 - PP<-24,550.

In your MATLAB workspace, create the A matrix as a 3-by-16 zero matrix, corresponding
to 3 linear inequalities in 16 variables. Create the b vector with three components.

A = zeros(3,106);
A(1,I1) = 1; A(1,HE1l) = -1; b(l) = 132000;
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A(2,EP) = -1; A(2,PP) = -1; b(2) = -12000;
(3,[P1,P2,PP]) = [-1,-1,-1];
b(3) = -24550;

Write Linear Equality Constraints
There are eight linear equations in the equations of “Model Description” on page 1-12:

I2 = LE2 + HE2

LPS LEl + LE2 + BF2

HPS = I1 + I2 + BF1

HPS Cc + MPS + LPS

I1 = LE1 + HE1l + C

MPS = HE1l + HE2 + BFl1 - BF2

1359.8 Il 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1
1359.8 I2 1267.8 HE2 + 1251.4 LE2 + 3413 P2.

In order to have the equations in the form Aeq x=beq, put all the variables on one side of
the equation. The equations become:

LE2 + HE2 - I2 = 0

LEl1 + LE2 + BF2 - LPS
I1 + I2 + BF1 - HPS =
C + MPS + LPS - HPS =
LEl + HE1 + C - I1 = O
HEl + HE2 + BF1 - BF2 - MPS = 0

1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1 - 1359.8 I1 =0
1267.8 HE2 + 1251.4 LE2 + 3413 P2 - 1359.8 I2 = 0.

o o |

Now write the Aeq matrix and beq vector corresponding to these equations. In your
MATLAB workspace, create the Aeq matrix as an 8-by-16 zero matrix, corresponding to 8
linear equations in 16 variables. Create the beqg vector with eight components, all zero.

Aeq = zeros(8,16); beqg = zeros(8,1);

Aeq(l, [LE2,HE2,I2]) = [1,1,-1];

Aeg (2 ,[LEl,LE2,BF2,LPS]) = [l l 1,-11;
Aeq(3,[I1,I2,BF1,HPS]) = [1 -11;

Aeq (4, [C,MPS,LPS,HPS]) = [1,1, ,—1];

Aeq (5, [LE1l,HEl,C,I1]) = [1,1,1,-1]1;

Aeq (6, [HE1,HE2,BF1,BF2,MPS]) = [1,1,1,-1,-1];

Aeq (7, [HEl1,LEl,C,P1,I1]) = [1267.8,1251.4,192,3413,-1359.8];
Aeq (8, [HE2,LE2,P2,1I2]) = [1267.8,1251.4,3413,-1359.8];
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Write the Objective
The objective function is

ffx=0.002614 HPS + 0.0239 PP + 0.009825 EP.

Write this expression as a vector f of multipliers of the x vector:

f = zeros(size(variables)):;
f([HPS PP EP]) = [0.002614 0.0239 0.009825];

Solve the Problem with linprog

You now have inputs required by the 1inprog solver. Call the solver and print the
outputs in formatted form:

options = optimoptions('linprog', 'Algorithm', 'dual-simplex"');
[x fval] = linprog(f,A,b,Aeq,beq,1lb,ub,options);
for d = 1:N

fprintf ('$12.2f \t%s\n',x(d),variables{d})

end

fval

The result:

Optimal solution found.
136328.74 I1
244000.00 I2
128159.00 HE1
143377.00 HE2

0.00 LE1
100623.00 LE2
8169.74 C

0.00 BF1
0.00 BF2
380328.74 HPS
271536.00 MPS
100623.00 LPS
6250.00 Pl
7060.71 P2
11239.29 PP
760.71 EP
fval =
1.2703e+03
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Examine the Solution

The fval output gives the smallest value of the objective function at any feasible point.

The solution vector x is the point where the objective function has the smallest value.
Notice that:

* BF1, BF2, and LE1 are 0, their lower bounds.
* I218244,000, its upper bound.

* The nonzero components of the f vector are

* HPS—380,328.74
PP—11,239.29
EP—760.71

The video Optimization Modeling, Part 2: Converting to Solver Form gives
interpretations of these characteristics in terms of the original problem.
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Set Up a Linear Program, Problem-Based

In this section...

“Convert a Problem to Solver Form” on page 1-21
“Model Description” on page 1-22

“First Solution Method: Create Optimization Variable for Each Problem Variable” on
page 1-23

“Create Problem and Objective” on page 1-23

“Create and Include Linear Constraints” on page 1-24

“Solve Problem” on page 1-24

“Examine Solution” on page 1-25

“Second Solution Method: Create One Optimization Variable and Indices” on page 1-26
“Set Variable Bounds” on page 1-26

“Create Problem, Linear Constraints, and Solution” on page 1-27

“Examine Indexed Solution” on page 1-27

“Bibliography” on page 1-28

Convert a Problem to Solver Form

This example shows how to convert a linear problem from mathematical form into
Optimization Toolbox solver syntax using the problem-based approach.

The variables and expressions in the problem represent a model of operating a chemical
plant, from an example in Edgar and Himmelblau “References” on page 1-28. There are
two videos that describe the problem.

*  Mathematical Modeling with Optimization, Part 1 shows the problem in pictorial
form. It shows how to generate the mathematical expressions of “Model Description”
on page 1-12 from the picture.

+  Optimization Modeling, Part 2: Problem-Based Solution of a Mathematical Model
describes how to convert these mathematical expressions into Optimization Toolbox
solver syntax. This video shows how to solve the problem, and how to interpret the
results.
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The remainder of this example is concerned solely with transforming the problem to
solver syntax. The example closely follows the video Optimization Modeling, Part 2:
Problem-Based Solution of a Mathematical Model.

Model Description

The video Mathematical Modeling with Optimization, Part 1 suggests that one way to
convert a problem into mathematical form is to:

Get an overall idea of the problem

Identify the goal (maximizing or minimizing something)
Identify (name) variables

Identify constraints

Determine which variables you can control

Specify all quantities in mathematical notation

Check the model for completeness and correctness

NO O WN =

For the meaning of the variables in this section, see the video Mathematical Modeling
with Optimization, Part 1.

The optimization problem is to minimize the objective function, subject to all the other
expressions as constraints.

The objective function is:
0.002614 HPS + 0.0239 PP + 0.009825 EP.
The constraints are:

2500 <P1<6250

I1<192,000

C<62,000

I1 - HE1<132,000

I1 = LE1 + HE1l + C

1359.8 I1 = 1267.8 HE1l + 1251.4 LE1l + 192 C + 3413 P1
3000 <P2<9000

I12<244,000

LE2<142,000

I2 = LE2 + HE2

1359.8 12 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2
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HPS = I1 + I2 + BF1

HPS = C + MPS + LPS

LPS = LE1 + LE2 + BF2

MPS = HEl + HE2 + BF1l - BF2
P1 + P2 + PP>24,550

EP + PP>12,000
MPS>271,536

LPS>100,623

All variables are positive.

First Solution Method: Create Optimization Variable for Each Problem
Variable

The first solution method involves creating an optimization variable for each problem
variable. As you create the variables, include their bounds.

Pl = optimvar ('P1l', 'LowerBound', 2500, 'UpperBound', 6250) ;
P2 = optimvar ('P2', 'LowerBound', 3000, 'UpperBound', 9000) ;
Il = optimvar('Il', 'LowerBound', 0, 'UpperBound',192000)
I2 = optimvar('I2', 'LowerBound', 0, 'UpperBound',244000);
C = optimvar('C', 'LowerBound', 0, 'UpperBound', 62000) ;

LE1 = optimvar('LE1l', 'LowerBound',0);

LE2 = optimvar ('LE2', 'LowerBound', 0O, 'UpperBound',142000) ;
HE1l = optimvar ('HE1l', 'LowerBound',0);

HE2 = optimvar ('HE2', 'LowerBound',0);

HPS = optimvar ('HPS', 'LowerBound',0);

MPS = optimvar ('MPS', 'LowerBound',271536);

LPS = optimvar ('LPS', 'LowerBound',100623) ;

BF1l = optimvar ('BF1l', 'LowerBound',0);

BF2 = optimvar ('BF2', 'LowerBound',0);

EP = optimvar ('EP', 'LowerBound',0);

PP = optimvar ('PP', 'LowerBound',0);

Create Problem and Objective

Create an optimization problem container. Include the objective function in the problem.

linprob = optimproblem('Objective',0.002614*HPS + 0.0239*PP + 0.009825*EP) ;
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Create and Include Linear Constraints

There are three linear inequalities in the problem expressions:

I1 - HE1<132,000
EP + PP>12,000
Pl + P2 + PP>24,5

50.

Create these inequality constraints and include them in the problem.

linprob.Constraints.
linprob.Constraints.
linprob.Constraints.

consl
cons?2
cons3

= I1 - HE1l <= 132000;
= EP + PP >= 12000;
= Pl + P2 + PP >= 24550;

There are eight linear equalities:

I2 = LE2 + HEZ2

LPS = LE1 + LE2 +
HPS = I1 + I2 + BF
HPS = C + MPS + LP
I1 = LE1 + HE1l + C
MPS = HE1l + HE2 +
1359.8 Il

BF2
1
S

BF1 -

BF2

1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1

1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2.

Include these constraints as well.

linprob.Constraints.
linprob.Constraints.
linprob.Constraints.
linprob.Constraints.
linprob.Constraints.
linprob.Constraints.
linprob.Constraints.
linprob.Constraints.

Solve Problem

econsl
econs?2
econs3
econs4
econsb
econs6
econs’
econs8

= LE2 + HE2 == I2;

= LE1 + LE2 + BF2 == LPS;

= Il + I2 + BFl1 == HPS;

= C + MPS + LPS == HPS;

= LE1 + HE1l + C == I1;

= HEl + HE2 + BF1 == BF2 + MPS;

= 1267.8*HE1 + 1251.4*LEl1 + 192*C + 3413*P1 == 1359.8*I1;

= 1267.8*HE2 + 1251.4*LE2 + 3413*P2

The problem formulation is complete. Solve the problem using solve.

linsol = solve(linpr

Optimal solution fou

ob);

nd.

1359.8*12;
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Examine Solution

Evaluate the objective function. (You could have asked for this value when you called
solve.)

evaluate (linprob.Objective, linsol)

ans =
1.2703e+03
The lowest-cost method of operating the plant costs $1,207.30.

Examine the solution variable values.

tbl = struct2table(linsol)

tbl =
1x16 table
BF1 BE2 C EP HE1 HE2 HPS I1
0 0 8169.7 760.71 1.2816e+05 1.4338e+05 3.8033e+05 1.3633¢

This table is too wide to see easily. Stack the variables to get them to a vertical
orientation.

vars = {'P1','P2','I1','I2','C',"'LE1','LE2"','HELl"', "HE2"', ...
"HPS', 'MPS', 'LPS','BF1','BF2','EP','PP'};

outputvars = stack(tbl,vars, 'NewDataVariableName', 'Amt', 'IndexVariableName', 'Var')

outputvars =

16x2 table
Var Amt
Pl 6250
P2 7060.7
Il 1.3633e+05
I2 2.44e+05
C 8169.7
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LE1 0
LE2 1.0062e+05
HE1 1.2816e+05
HE2 1.4338e+05
HPS 3.8033e+05
MPS 2.7154e+05
LPS 1.0062e+05
BF1 0
BF2 0
EP 760.71

PP 11239

* BF1, BF2, and LE1 are 0, their lower bounds.
*+ I218244,000, its upper bound.

+ The nonzero components of the objective function (cost) are

HPS — 380, 328.74
PP—11,239.29
* EP—760.71

The video Optimization Modeling, Part 2: Problem-Based Solution of a Mathematical
Model gives interpretations of these characteristics in terms of the original problem.

Second Solution Method: Create One Optimization Variable and Indices

Alternatively, you can solve the problem using just one optimization variable that has
indices with the names of the problem variables. This method enables you to give a lower
bound of zero to all problem variables at once.

vars = {'P1','P2','I1','I2','C','LE1', 'LE2', 'HELl', 'HE2"', ...
"HPS', 'MPS', 'LPS','BF1','BF2','EP','PP'};
x = optimvar('x',vars, 'LowerBound',0);

Set Variable Bounds

Include the bounds on the variables using dot notation.

x('"P1l'") .LowerBound = 2500;
x('"P2'") .LowerBound = 3000;
x ('"MPS'") .LowerBound = 271536;
x('"LPS'") .LowerBound = 100623;
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x('P1l") .UpperBound =
x('P2") .UpperBound =
x('I1") .UpperBound =
x('I2") .UpperBound =
x('C'") .UpperBound =
x ('LE2") .UpperBound

6250;
9000;

192000;
244000;

62000;

= 142000;

Create Problem, Linear Constraints, and Solution

The remainder of the problem setup is similar to the setup using separate variables. The
difference is that, instead of addressing a variable by its name, such as P1, you address it

using its index, x ('P1"

).

Create the problem object, include the linear constraints, and solve the problem.

linprob = optimproblem('Objective',0.002614*x ('HPS")

+ 0.0239*x("'PP")

+ 0.009825*x ("EP'

+ 192*x('C") + 3413*x ('L

1359.¢

linprob.Constraints.consl = x('I1'") - x('HE1'"'") <= 132000;
linprob.Constraints.cons2 = x('EP') + x('PP') >= 12000;
linprob.Constraints.cons3 = x('P1'") + x('P2") + x('PP') >= 24550;
linprob.Constraints.econsl X('LE2'") + x('HE2'") == x('I2");
linprob.Constraints.econs?2 x('"LE1'") + x('"LE2") + x('BF2') == x('LPS'");
linprob.Constraints.econs3 x('"I1") + x('"I2") + x('BF1'") == x('HPS'");
linprob.Constraints.econs4 x('C") + xX('MPS'") + x('LPS'") == x('HPS'");
linprob.Constraints.econsb x('"LE1'") + x('HE1'") 4+ x('C") == x('I1");
linprob.Constraints.econs6 x("HE1'") + x('HE2'") + x('BF1'") == x('BF2') + x('MPS");
linprob.Constraints.econs? 1267.8*x ("HE1") + 1251.4*x('LE1")
linprob.Constraints.econs8 1267.8*x ("HE2'") + 1251.4*x('LE2'") + 3413*x('P2")
[1linsol, fval] = solve(linprob);

Optimal solution fou

Examine Indexed Solution

nd.

Examine the solution as a vertical table.

tbl

tbl =

16x2 table

table (vars',linsol.x"')
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Varl vVar?2

'p1! 6250
'p2" 7060.7
‘11" 1.3633e+05
‘12" 2.44e+05
'C!' 8169.7
'LE1" 0
'LE2' 1.0062e+05
'HE1' 1.2816e+05
'HE2' 1.4338e+05
'HPS' 3.8033e+05
'MPS"' 2.7154e+05
'LPS' 1.0062e+05
'BF1 0
'BF2' 0
'EP' 760.71
'PP! 11239
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Optimization Theory Overview

Optimization Theory Overview

Optimization techniques are used to find a set of design parameters, x = {x;,%,,...,X,}, that
can in some way be defined as optimal. In a simple case this might be the minimization
or maximization of some system characteristic that is dependent on x. In a more
advanced formulation the objective function, f(x), to be minimized or maximized, might
be subject to constraints in the form of equality constraints, G;(x) =0 (i =1,...,m,);
inequality constraints, G;(x) <0 (i = m, + 1,...,m); and/or parameter bounds, x;, x,,.

A General Problem (GP) description is stated as

min f(x),

subject to
Gix)=0 i=1,..,m,,
Gi(x)<0 i=m,+1,..,m,

where x 1s the vector of length n design parameters, f(x) is the objective function, which
returns a scalar value, and the vector function G(x) returns a vector of length m
containing the values of the equality and inequality constraints evaluated at x.

An efficient and accurate solution to this problem depends not only on the size of the
problem in terms of the number of constraints and design variables but also on
characteristics of the objective function and constraints. When both the objective function
and the constraints are linear functions of the design variable, the problem is known as a
Linear Programming (LLP) problem. Quadratic Programming (QP) concerns the
minimization or maximization of a quadratic objective function that is linearly
constrained. For both the LP and QP problems, reliable solution procedures are readily
available. More difficult to solve is the Nonlinear Programming (NP) problem in which
the objective function and constraints can be nonlinear functions of the design variables.
A solution of the NP problem generally requires an iterative procedure to establish a
direction of search at each major iteration. This is usually achieved by the solution of an
LP, a QP, or an unconstrained subproblem.

All optimization takes place in real numbers. However, unconstrained least squares
problems and equation-solving can be formulated and solved using complex analytic
functions. See “Complex Numbers in Optimization Toolbox Solvers” on page 2-19.
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Optimization Toolbox Solvers

There are four general categories of Optimization Toolbox solvers:

Minimizers on page 2-16

This group of solvers attempts to find a local minimum of the objective function near a
starting point x0. They address problems of unconstrained optimization, linear
programming, quadratic programming, and general nonlinear programming.

Multiobjective minimizers on page 2-17

This group of solvers attempts to either minimize the maximum value of a set of
functions (fminimax), or to find a location where a collection of functions is below
some prespecified values (fgoalattain).

Equation solvers on page 2-17

This group of solvers attempts to find a solution to a scalar- or vector-valued
nonlinear equation f(x) = 0 near a starting point x0. Equation-solving can be
considered a form of optimization because it is equivalent to finding the minimum
norm of f(x) near x0.

Least-Squares (curve-fitting) solvers on page 2-18

This group of solvers attempts to minimize a sum of squares. This type of problem
frequently arises in fitting a model to data. The solvers address problems of finding
nonnegative solutions, bounded or linearly constrained solutions, and fitting
parameterized nonlinear models to data.

For more information see “Problems Handled by Optimization Toolbox Functions” on
page 2-16. See “Optimization Decision Table” on page 2-6 for aid in choosing among
solvers for minimization.

Minimizers formulate optimization problems in the form
min f(x),

possibly subject to constraints. f(x) is called an objective function. In general, f(x) is a
scalar function of type double, and x is a vector or scalar of type double. However,
multiobjective optimization, equation solving, and some sum-of-squares minimizers, can
have vector or matrix objective functions F(x) of type double. To use Optimization
Toolbox solvers for maximization instead of minimization, see “Maximizing an Objective”
on page 2-39.



Optimization Toolbox Solvers

Write the objective function for a solver in the form of a function file or anonymous
function handle. You can supply a gradient Vf(x) for many solvers, and you can supply a
Hessian for several solvers. See “Write Objective Function”. Constraints have a special
form, as described in “Write Constraints”.
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Optimization Decision Table

The following table is designed to help you choose a solver. It does not address
multiobjective optimization or equation solving. There are more details on all the solvers
in “Problems Handled by Optimization Toolbox Functions” on page 2-16.

In this table:

* means relevant solvers are found in Global Optimization Toolbox (Global
Optimization Toolbox) functions (licensed separately from Optimization Toolbox
solvers).

fmincon applies to most smooth objective functions with smooth constraints. It is not
listed as a preferred solver for least squares or linear or quadratic programming
because the listed solvers are usually more efficient.

The table has suggested functions, but it is not meant to unduly restrict your choices.
For example, fmincon can be effective on some nonsmooth problems.

The Global Optimization Toolbox ga function can address mixed-integer
programming problems.

The Statistics and Machine Learning Toolbox™ bayesopt function can address low-
dimensional deterministic or stochastic optimization problems with combinations of
continuous, integer, or categorical variables.



Optimization Decision Table

Solvers by Objective and Constraint

Constraint Type Objective Type
Linear Quadratic Least Squares |Smooth Nonsmooth
Nonlinear
None n/a (f = const, |quadprog, mldivide, fminsearch, |fminsearch,*
or min = —) [Information lsgcurvefit, |[fminunc,
lsgnonlin, Information
Information
Bound linprog, quadprog, lsgcurvefit, |fminbnd, fminbnd, *
Information Information lsglin, fmincon,
lsgnonlin, fseminf,
lsgnonneg, Information
Information
Linear linprog, quadprog, lsglin, fmincon, *
Information Information Information fseminf,
Information
General fmincon, fmincon, fmincon, fmincon, *
Smooth Information Information Information fseminf,
Information
Discrete, with |intlinprog, [* * * *
Bound or Information
Linear

Note This table does not list multiobjective solvers nor equation solvers. See “Problems
Handled by Optimization Toolbox Functions” on page 2-16 for a complete list of
problems addressed by Optimization Toolbox functions.

Note Some solvers have several algorithms. For help choosing, see “Choosing the

Algorithm” on page 2-8.
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Choosing the Algorithm

2-8

In this section...

“fmincon Algorithms” on page 2-8

“fsolve Algorithms” on page 2-10

“fminunc Algorithms” on page 2-10

“Least Squares Algorithms” on page 2-11

“Linear Programming Algorithms” on page 2-12
“Quadratic Programming Algorithms” on page 2-13
“Large-Scale vs. Medium-Scale Algorithms” on page 2-13

“Potential Inaccuracy with Interior-Point Algorithms” on page 2-14

fmincon Algorithms
fmincon has five algorithm options:

* 'interior-point' (default)

* 'trust-region-reflective'
. v sqpl

» 'sgp-legacy'

+ 'active-set'

Use optimoptions to set the Algorithm option at the command line.
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Recommendations

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-14.

Use the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-14.

To run an optimization again to obtain more speed on small- to medium-sized
problems, try 'sqgp' next, and 'active-set' last.

Use 'trust-region-reflective' when applicable. Your problem must have:
objective function includes gradient, only bounds, or only linear equality constraints
(but not both).

Reasoning Behind the Recommendations

'interior-point' handles large, sparse problems, as well as small dense problems.
The algorithm satisfies bounds at all iterations, and can recover from NaN or Inf
results. It is a large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms”
on page 2-13. The algorithm can use special techniques for large-scale problems. For
details, see Interior-Point Algorithm in fmincon options.

'sqgp' satisfies bounds at all iterations. The algorithm can recover from NaN or Inf
results. It is not a large-scale algorithm; see “Large-Scale vs. Medium-Scale
Algorithms” on page 2-13.

'sgp-legacy' is similar to 'sgp"', but usually is slower and uses more memory.

'active-set' can take large steps, which adds speed. The algorithm is effective on
some problems with nonsmooth constraints. It is not a large-scale algorithm; see
“Large-Scale vs. Medium-Scale Algorithms” on page 2-13.

'trust-region-reflective' requires you to provide a gradient, and allows only
bounds or linear equality constraints, but not both. Within these limitations, the
algorithm handles both large sparse problems and small dense problems efficiently. It
is a large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms” on page 2-
13. The algorithm can use special techniques to save memory usage, such as a
Hessian multiply function. For details, see Trust-Region-Reflective Algorithm in
fmincon options.

For descriptions of the algorithms, see “Constrained Nonlinear Optimization Algorithms”
on page 6-22.
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fsolve Algorithms

fsolve has three algorithms:

'trust-region-dogleg' (default)
* 'trust-region'

+ 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

Use the 'trust-region-dogleg' algorithm first.

For help if £solve fails, see “When the Solver Fails” on page 4-3 or “When the
Solver Might Have Succeeded” on page 4-14.

To solve equations again if you have a Jacobian multiply function, or want to tune
the internal algorithm (see Trust-Region Algorithm in fsolve options), try
'trust-region’.

Try timing all the algorithms, including 'levenberg-marquardt', to find the
algorithm that works best on your problem.

Reasoning Behind the Recommendations

'trust-region-dogleg' is the only algorithm that is specially designed to solve

nonlinear equations. The others attempt to minimize the sum of squares of the
function.

The 'trust-region' algorithm is effective on sparse problems. It can use special
techniques such as a Jacobian multiply function for large-scale problems.

For descriptions of the algorithms, see “Equation Solving Algorithms” on page 12-2.

fminunc Algorithms
fminunc has two algorithms:

* 'quasi-newton' (default)

* 'trust-region'

Use optimoptions to set the Algorithm option at the command line.
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Recommendations

If your objective function includes a gradient, use 'Algorithm' = 'trust-
region', and set the SpecifyObjectiveGradient option to true.

* Otherwise, use 'Algorithm' = 'quasi-newton'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-14.

For descriptions of the algorithms, see “Unconstrained Nonlinear Optimization
Algorithms” on page 6-2.

Least Squares Algorithms
Isqlin
1sglin has two algorithms:

*+ 'interior-point', the default

* 'trust-region-reflective'

Use optimoptions to set the Algorithm option at the command line.
Recommendations

Try 'interior-point’ first.

Tip For better performance when your input matrix C has a large fraction of nonzero
entries, specify C as an ordinary double matrix. Similarly, for better performance
when C has relatively few nonzero entries, specify C as sparse. For data type details,
see “Sparse Matrices” (MATLAB).

+ If you have no constraints or only bound constraints, and want higher accuracy,
more speed, or want to use a “Jacobian Multiply Function with Linear Least
Squares” on page 11-29, try 'trust-region-reflective'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-14.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-14.

2-11



2 Setting Up an Optimization

For descriptions of the algorithms, see “Least-Squares (Model Fitting) Algorithms” on
page 11-2.

Isqcurvefit and Isqnonlin
lsgcurvefit and 1sgnonlin have two algorithms:

* 'trust-region-reflective' (default)

* 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

* Generally, try 'trust-region-reflective' first.

+ If your problem is underdetermined (fewer equations than dimensions), use
'levenberg-marquardt’.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-14.

For descriptions of the algorithms, see “Least-Squares (Model Fitting) Algorithms” on
page 11-2.

Linear Programming Algorithms

linprog has three algorithms:

* 'dual-simplex', the default
* 'interior-point-legacy'

* 'interior-point'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

Use the 'dual-simplex' algorithm or the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-14.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-14.
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Reasoning Behind the Recommendations

+ Often, the 'dual-simplex' and 'interior-point' algorithms are fast, and use
the least memory.

* The 'interior-point-legacy' algorithm is similar to 'interior-point', but
'interior-point-legacy"' can be slower, less robust, or use more memory.

For descriptions of the algorithms, see “Linear Programming Algorithms” on page 8-2.

Quadratic Programming Algorithms
quadprog has two algorithms:

* 'interior-point-convex' (default)

* 'trust-region-reflective'

Use optimoptions to set the Algorithm option at the command line.
Recommendations

+ If you have a convex problem, or if you don't know whether your problem is convex,
use 'interior-point-convex'.

Tip For better performance when your Hessian matrix H has a large fraction of
nonzero entries, specify H as an ordinary double matrix. Similarly, for better
performance when H has relatively few nonzero entries, specify H as sparse. For data
type details, see “Sparse Matrices” (MATLAB).

+ If you have a nonconvex problem with only bounds, or with only linear equalities, use
'trust-region-reflective'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-14.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-14.

For descriptions of the algorithms, see “Quadratic Programming Algorithms” on page 10-
2.

Large-Scale vs. Medium-Scale Algorithms

An optimization algorithm is large scale when it uses linear algebra that does not need to
store, nor operate on, full matrices. This may be done internally by storing sparse
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matrices, and by using sparse linear algebra for computations whenever possible.
Furthermore, the internal algorithms either preserve sparsity, such as a sparse Cholesky
decomposition, or do not generate matrices, such as a conjugate gradient method.

In contrast, medium-scale methods internally create full matrices and use dense linear
algebra. If a problem is sufficiently large, full matrices take up a significant amount of
memory, and the dense linear algebra may require a long time to execute.

Don't let the name “large scale” mislead you; you can use a large-scale algorithm on a
small problem. Furthermore, you do not need to specify any sparse matrices to use a
large-scale algorithm. Choose a medium-scale algorithm to access extra functionality,
such as additional constraint types, or possibly for better performance.

Potential Inaccuracy with Interior-Point Algorithms

Interior-point algorithms in fmincon, quadprog, 1sgqlin, and 1inprog have many good
characteristics, such as low memory usage and the ability to solve large problems
quickly. However, their solutions can be slightly less accurate than those from other
algorithms. The reason for this potential inaccuracy is that the (internally calculated)
barrier function keeps iterates away from inequality constraint boundaries.

For most practical purposes, this inaccuracy is usually quite small.
To reduce the inaccuracy, try to:

*  Rerun the solver with smaller StepTolerance, OptimalityTolerance, and
possibly ConstraintTolerance tolerances (but keep the tolerances sensible.) See
“Tolerances and Stopping Criteria” on page 2-78).

*  Run a different algorithm, starting from the interior-point solution. This can fail,
because some algorithms can use excessive memory or time, and all 1inprog and
some quadprog algorithms do not accept an initial point.

For example, try to minimize the function x when bounded below by 0. Using the
fmincon default interior-point algorithm:

options = optimoptions (@fmincon, 'Algorithm', 'interior-point', 'Display', 'off');
x = fmincon(@(x)x,1,[],[],[],[1,0,[],[],options)

X =

2.0000e-08
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Using the fmincon sgp algorithm:

options.Algorithm = 'sgp';
x2 = fmincon(@(x)x,1,[1,[1,[1,01,0,[],[],options)

X2 =
0

Similarly, solve the same problem using the 1inprog interior-point-legacy
algorithm:

opts = optimoptions(@linprog, 'Display','off', "Algorithm', "interior-point-legacy');
X = linprog(l, [1,01,01,101,0, [1,1,0pts)

2.0833e-13
Using the 1inprog dual-simplex algorithm:

opts.Algorithm = 'dual-simplex';
X2 = linprog(1, []r []/ []r []IOI []Ilropts)

X2

0

In these cases, the interior-point algorithms are less accurate, but the answers are quite
close to the correct answer.
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Problems Handled by Optimization Toolbox Functions

The following tables show the functions available for minimization, equation solving,
multiobjective optimization, and solving least-squares or data-fitting problems.

Minimization Problems

min f(x)

such that K(x,w) < 0 for all w, ¢(x) <0, ceq(x) =0,
Ax<b,Aeq x=beq, lb<x<ub

Type Formulation Solver
Scalar minimization min f(x) fminbnd
X
such that Ib < x < ub (x is scalar)
Unconstrained minimization min f(x) fminunc,
x fminsearch
Linear programming min fo linprog
X
such that A x < b, Aeq x = beq, Ib<x<ub
Mlxed-lntgger linear min fo intlinprog
programming P
such that A x < b, Aeq x = beq, Ib <x < ub,
x(intcon) is integer-valued.
Quadratic programming .17 T quadprog
min—x" Hx+c" x
X
such that A x < b, Aeq x = beq, b <x<ub
Constrained minimization min f(x) fmincon
X
such that c(x) <0, ceq(x) =0, A x < b, Aeq x = beq,
Ib<x<ub
Semi-infinite minimization fseminf

2-16




Problems Handled by Optimization Toolbox Functions

Multiobjective Problems

Type Formulation Solver
Goal attainment min y fgoalattain
x,Y

such that F(x) — w ¥y < goal, c¢(x) <0, ceq(x) = 0,
Ax<b,Aeq x=beq,lb<x<ub

Minimax mlnmaxl?l(x) fminimax
x i

such that c(x) <0, ceq(x) =0, A x < b, Aeq x = beq,

Ib<x<ub

Equation Solving Problems

Type Formulation Solver

Linear equations Cx =d, n equations, n variables mldivide
(matrix left
division)

Nonlinear equation of one fx)=0 fzero

variable

Nonlinear equations F(x) = 0, n equations, n variables fsolve
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Least-Squares (Model-Fitting) Problems

min ||F(x,xdata) = ydata";
X

such that Ib <x<ub

Type Formulation Solver
Linear least-squares 1 9 mldivide
min §||C x=dl (matrix left
. . division)
m equations, n variables
Nonnegative linear-least- 1 9 lsgnonneg
squares min EHC -x—dJ;
X
such that x>0
Constrained linear-least- 1 9 lsqglin
squares min —[C - x —d,
x 2
such that A x < b, Aeq x = beq, Ib<x<ub
Nonlinear least-squares . 2 . lsgnonlin
! min||F(x), = min 2 F2(x) :
such that Ib <x <ub
Nonlinear curve fitting lsgcurvefit
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Complex Numbers in Optimization Toolbox Solvers

Generally, Optimization Toolbox solvers do not accept or handle objective functions or
constraints with complex values. However, the least-squares solvers 1sqgcurvefit,
lsgnonlin, and 1sglin, and the £solve solver can handle these objective functions
under the following restrictions:

+ The objective function must be analytic in the complex function sense (for details, see
Nevanlinna and Paatero [1]). For example, the function f(z) = Re(z) — iIm(2) is not
analytic, but the function f(z) = exp(z) is analytic. This restriction automatically holds
for 1sglin.

*  There must be no constraints, not even bounds. Complex numbers are not well
ordered, so it is not clear what “bounds” might mean.

* Do not set the FunValCheck option to 'on'. This option immediately halts a solver
when the solver encounters a complex value.

The least-squares solvers and fsolve try to minimize the squared norm of a vector of
function values. This makes sense even in the presence of complex values.

If you have a non-analytic function or constraints, split the real and imaginary parts of
the problem. For an example, see “Fit a Model to Complex-Valued Data” on page 11-36.

To get the best (smallest norm) solution, try setting a complex initial point. For example,
solving 1 + x* = 0 fails if you use a real start point:

f = Q@ (x)1+x"4;

x0 = 1;

x = fsolve (f, x0)

No solution found.

fsolve stopped because the problem appears regular as measured by the gradient,

but the vector of function values is not near zero as measured by the
default value of the function tolerance.

1.1176e-08

However, if you use a complex initial point, fsolve succeeds:
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x0 =1 4+ 11/10;
x = fsolve (f, x0)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

0.7071 + 0.70711

References

[1] Nevanlinna, Rolf, and V. Paatero. Introduction to Complex Analysis. Addison-Wesley,
1969.

See Also

Related Examples
. “Fit a Model to Complex-Valued Data” on page 11-36
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Types of Objective Functions

Many Optimization Toolbox solvers minimize a scalar function of a multidimensional
vector. The objective function is the function the solvers attempt to minimize. Several
solvers accept vector-valued objective functions, and some solvers use objective functions
you specify by vectors or matrices.

Objective Type Solvers How to Write Objectives
Scalar fmincon “Writing Scalar Objective Functions” on
page 2-22
fminunc
fminbnd
fminsearch
fseminf
fzero
Nonlinear least squares lsgcurvefit “Writing Vector and Matrix Objective
Functions” on page 2-34
lsgnonlin
Multivariable equation fsolve
solving
Multiobjective fgoalattain
fminimax
Linear programming linprog “Writing Objective Functions for Linear or
Mixed-integer linear intlinprog Quadratic Problems” on page 2-38
programming
Linear least squares lsglin
lsgnonneg

Quadratic programming |quadprog
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Writing Scalar Objective Functions

2-22

In this section...

“Function Files” on page 2-22

“Anonymous Function Objectives” on page 2-24

“Including Gradients and Hessians” on page 2-24

Function Files

A scalar objective function file accepts one input, say x, and returns one real scalar
output, say £. The input x can be a scalar, vector, or matrix on page 2-40. A function file
can return more outputs (see “Including Gradients and Hessians” on page 2-24).

For example, suppose your objective is a function of three variables, x, y, and z:
f(x) =3%(@x—y)* +4%(x + 2)2/ (1 + x® + y2 + 2%) + cosh(x — 1) + tanh(y + 2).

1  Write this function as a file that accepts the vector xin = [x;y;z] and returns f:

function f = myObjective (xin)
f = 3*(xin(l)-xin(2))"4 + 4* (xin(1l)+xin(3))"2/ (l+norm(xin)"2)
+ cosh(xin(1l)-1) + tanh(xin(2)+xin(3));
2 Saveit as a file named myObjective.m to a folder on your MATLAB path.
Check that the function evaluates correctly:

w

myObjective ([1;2;3])

ans =
9.2666

For information on how to include extra parameters, see “Passing Extra Parameters” on
page 2-64. For more complex examples of function files, see “Minimization with
Gradient and Hessian Sparsity Pattern” on page 6-18 or “Minimization with Bound
Constraints and Banded Preconditioner” on page 6-68.

Local Functions and Nested Functions

Functions can exist inside other files as local functions (MATLAB) or nested functions
(MATLAB). Using local functions or nested functions can lower the number of distinct
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files you save. Using nested functions also lets you access extra parameters, as shown in
“Nested Functions” on page 2-66.

For example, suppose you want to minimize the myObjective.m objective function,
described in “Function Files” on page 2-22, subject to the ellipseparabola.m
constraint, described in “Nonlinear Constraints” on page 2-48. Instead of writing two
files, myObjective.mand ellipseparabola.m, write one file that contains both
functions as local functions:

function [x fval] = callObjConstr (x0,options)

)

% Using a local function for just one file

if nargin < 2
options = optimoptions('fmincon', 'Algorithm', 'interior-point');
end

[x fval] = fmincon (@myObjective,x0, [1,[1,[1,01,[1,1[1]1,
@ellipseparabola,options);

function f = myObjective (xin)
f = 3*(xin(1l)-xin(2))"4 + 4* (xin(1)+xin(3)) "2/ (1+sum(xin.”2))
+ cosh(xin(l)-1) + tanh(xin(2)+xin(3));

function [c,ceq] = ellipseparabola (x)
c(l) = (x(1)"2)/9 + (x(2)"2)/4 - 1;
c(2) = x(1)"2 - x(2) - 1;

ceq = [];

Solve the constrained minimization starting from the point [1;1;1]:

[x fval] = callObjConstr (ones(3,1))
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

1.1835
0.8345
-1.6439
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fval =
0.5383

Anonymous Function Objectives

Use anonymous functions to write simple objective functions. For more information about
anonymous functions, see “What Are Anonymous Functions?” (MATLAB). Rosenbrock's
function is simple enough to write as an anonymous function:

anonrosen = @(x) (100* (x(2) - x(1)"2)"2 + (1-x(1))"2);
Check that anonrosen evaluates correctly at [-1 2]:

anonrosen ([-1 21)

ans =
104

Minimizing anonrosen with fminunc yields the following results:

options = optimoptions (@Gfminunc, 'Algorithm', 'quasi-newton');
[x fval] = fminunc (anonrosen, [-1;2],o0ptions)

Local minimum found.
Optimization completed because the size of the gradient
is less than the default value of the function tolerance.
1.0000
1.0000
fval =

1.2266e-10

Including Gradients and Hessians

+  “Provide Derivatives For Solvers” on page 2-25
* “How to Include Gradients” on page 2-25
* “Including Hessians” on page 2-27

+  “Benefits of Including Derivatives” on page 2-31
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* “Choose Input Hessian Approximation for interior-point fmincon” on page 2-32

Provide Derivatives For Solvers

For fmincon and fminunc, you can include gradients in the objective function.
Generally, solvers are more robust, and can be slightly faster when you include
gradients. See “Benefits of Including Derivatives” on page 2-31. To also include second
derivatives (Hessians), see “Including Hessians” on page 2-27.

The following table shows which algorithms can use gradients and Hessians.

Solver Algorithm Gradient Hessian
fmincon active-set Optional No
interior-point Optional Optional (see “Hessian for fmincon
interior-point algorithm” on page 2-
28)
sgp Optional No
trust-region-reflective |Required Optional (see “Hessian for fminunc
trust-region or fmincon trust-region-
reflective algorithms” on page 2-27)
fminunc quasi-newton Optional No
trust-region Required Optional (see “Hessian for fminunc

trust-region or fmincon trust-region-
reflective algorithms” on page 2-27)

How to Include Gradients

1  Write code that returns:

+ The objective function (scalar) as the first output

* The gradient (vector) as the second output

2 Set the SpecifyObjectiveGradient option to true using optimoptions. If
appropriate, also set the SpecifyConstraintGradient option to true.

3  Optionally, check if your gradient function matches a finite-difference
approximation. See “Checking Validity of Gradients or Jacobians” on page 2-81.

Tip For most flexibility, write conditionalized code. Conditionalized means that the
number of function outputs can vary, as shown in the following example. Conditionalized
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code does not error depending on the value of the SpecifyObjectiveGradient option.
Unconditionalized code requires you to set options appropriately.

For example, consider Rosenbrock's function

ﬂx)=1mﬂx2—x%f441—xﬁa

which is described and plotted in “Solve a Constrained Nonlinear Problem” on page 1-3.
The gradient of f(x) is

~400(xy - o Jo; ~2(1- ;)
Vf(x) =

>

200(x; - 7 )

rosentwo is a conditionalized function that returns whatever the solver requires:

function [f,g] = rosentwo (x)

)

% Calculate objective £
f = 100*%(x(2) - x(1)"2)"2 + (1-x(1))"2;

if nargout > 1 % gradient required
g = [-400*(x(2)-x(1)"2) *x(1)-2*(1-x(1));
200* (x(2)-x(1)"2)1;

end

nargout checks the number of arguments that a calling function specifies. See “Find
Number of Function Arguments” (MATLAB).

The fminunc solver, designed for unconstrained optimization, allows you to minimize
Rosenbrock's function. Tell fminunc to use the gradient and Hessian by setting
options:

options = optimoptions (@fminunc, 'Algorithm', 'trust-region', ...
'SpecifyObjectiveGradient', true) ;

Run fminunc starting at [-1;2]:

[x fval] = fminunc(@rosentwo, [-1;2],o0ptions)
Local minimum found.
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Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

1.0000
1.0000

fval =
1.9886e-17

If you have a Symbolic Math Toolbox™ license, you can calculate gradients and Hessians
automatically, as described in “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-80.

Including Hessians

You can include second derivatives with the fmincon 'trust-region-reflective'
and 'interior-point' algorithms, and with the fminunc 'trust-region'
algorithm. There are several ways to include Hessian information, depending on the type
of information and on the algorithm.

You must also include gradients (set SpecifyObjectiveGradient to true and, if
applicable, SpecifyConstraintGradient to true) in order to include Hessians.

+  “Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms”
on page 2-27
* “Hessian for fmincon interior-point algorithm” on page 2-28

+ “Hessian Multiply Function” on page 2-30

Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms

These algorithms either have no constraints, or have only bound or linear equality
constraints. Therefore the Hessian is the matrix of second derivatives of the objective
function.

Include the Hessian matrix as the third output of the objective function. For example, the
Hessian H(x) of Rosenbrock’s function is (see “How to Include Gradients” on page 2-25)

1200x2 —400xq +2 —400x;
~400x, 200 |

H(x)=

Include this Hessian in the objective:
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2-28

function [f, g, H] = rosenboth(x)
% Calculate objective f
f = 100*%(x(2) - x(1)"2)"2 + (1-x(1))"2;

if nargout > 1 % gradient required
g = [-400* (x(2)-x(1)"2)*x(1)-2*(1-x(1));
200* (x(2)-x(1)"2)1;
if nargout > 2 % Hessian required
H = [1200*x(1)"2-400*x(2)+2, -400*x(1);
-400*x (1), 200];
end

end

Set HessianFcn to 'objective'. For example,

options = optimoptions ('fminunc','Algorithm','trust-region', ...
'SpecifyObjectiveGradient', true, 'HessianFcn', 'objective');

Hessian for fmincon interior-point algorithm

The Hessian is the Hessian of the Lagrangian, where the Lagrangian L(x,\) is

L(x,2) = f(0) + Y Ag igi () + Y Ap iy ().

g and h are vector functions representing all inequality and equality constraints
respectively (meaning bound, linear, and nonlinear constraints), so the minimization
problem is

min f(x) subject to g(x) <0, A(x) =0.
X

For details, see “Constrained Optimality Theory” on page 3-12. The Hessian of the
Lagrangian is

V2 L(x,A) = V20 + Y AgiV2gi () + > Ay V2R ().
To include a Hessian, write a function with the syntax

hessian = hessianfcn (x, lambda)

hessian is an n-by-n matrix, sparse or dense, where n is the number of variables. If
hessian is large and has relatively few nonzero entries, save running time and memory
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by representing hessian as a sparse matrix. lambda is a structure with the Lagrange
multiplier vectors associated with the nonlinear constraints:

lambda.inegnonlin
lambda.egnonlin

fmincon computes the structure 1ambda and passes it to your Hessian function.
hessianfcn must calculate the sums in “Equation 2-2” on page 2-28. Indicate that you
are supplying a Hessian by setting these options:

options = optimoptions('fmincon', 'Algorithm', '"interior-point', ...
'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
'HessianFcn', @hessianfcn);

For example, to include a Hessian for Rosenbrock’s function constrained to the unit disk

x% + x22 <1, notice that the constraint function g(x)= xlz + x% —1<0 has gradient and
second derivative matrix

_ le
o]

2 0
Hyw=| |

Write the Hessian function as

function Hout = hessianfcn (x, lambda)

% Hessian of objective

H = [1200*x(1)"2-400*x(2)+2, -400*x(1);
-400*x (1), 200];

% Hessian of nonlinear inequality constraint

Hg = 2*eye (2);

Hout = H + lambda.inegnonlin*Hg;

Save hessianfcn on your MATLAB path. To complete the example, the constraint
function including gradients is

function [c,ceq,gc,gceq] = unitdisk2 (x)
c=x(1)"2 + x(2)"2 - 1;
ceq = [ s

if nargout > 2
gc = [2*x(1);2*x(2)1];
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2-30

gceq = [1;
end

Solve the problem including gradients and Hessian.

fun = @rosenboth;

nonlcon = @unitdisk2;

x0 = [-1;2]1;

options = optimoptions('fmincon', 'Algorithm', "interior-point', ...
'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
'HessianFcn', @hessianfcn);

[x,fval,exitflag,output] = fmincon (fun,x0,[1,[1,[],[],[]1,[],@unitdisk2,options);

For other examples using an interior-point Hessian, see “fmincon Interior-Point
Algorithm with Analytic Hessian” on page 6-51 and “Symbolic Math Toolbox Calculates
Gradients and Hessians” on page 6-80.

Hessian Multiply Function

Instead of a complete Hessian function, both the fmincon interior-point and trust-
region-reflective algorithms allow you to supply a Hessian multiply function. This
function gives the result of a Hessian-times-vector product, without computing the
Hessian directly. This can save memory. The SubproblemAlgorithm option must be
'cg' for a Hessian multiply function to work; this is the trust-region-reflective
default.

The syntaxes for the two algorithms differ.
* For the interior-point algorithm, the syntax is
W = HessMultFcn (x, lambda, V) ;

The result W should be the product H*v, where H is the Hessian of the Lagrangian at x
(see “Equation 15-1” on page 15-73), 1ambda is the Lagrange multiplier (computed
by fmincon), and v is a vector of size n-by-1. Set options as follows:

options = optimoptions ('fmincon', 'Algorithm', 'interior-point', 'SpecifyObjectiveGradi
'SpecifyConstraintGradient', true, 'SubproblemAlgorithm', 'cg', 'HessianMultiplyFcn'

Supply the function HessMul tFcn, which returns an n-by-1 vector, where n is the
number of dimensions of x. The HessianMultiplyFcn option enables you to pass the
result of multiplying the Hessian by a vector without calculating the Hessian.



Writing Scalar Objective Functions

* The trust-region-reflective algorithm does not involve 1ambda:

W = HessMultFcn (H,v);

The result W = H*v. fmincon passes H as the value returned in the third output of
the objective function (see “Hessian for fminunc trust-region or fmincon trust-region-
reflective algorithms” on page 2-27). fmincon also passes v, a vector or matrix with n
rows. The number of columns in v can vary, so write HessMultFcn to accept an
arbitrary number of columns. H does not have to be the Hessian; rather, it can be
anything that enables you to calculate w = H*v.

Set options as follows:

options = optimoptions ('fmincon', 'Algorithm', '"trust-region-reflective', ...
'SpecifyObjectiveGradient', true, 'HessianMultiplyFcn', @HessMultFcn) ;

For an example using a Hessian multiply function with the trust-region-
reflective algorithm, see “Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-75.

Benefits of Including Derivatives

If you do not provide gradients, solvers estimate gradients via finite differences. If you
provide gradients, your solver need not perform this finite difference estimation, so can
save time and be more accurate, although a finite-difference estimate can be faster for
complicated derivatives. Furthermore, solvers use an approximate Hessian, which can be
far from the true Hessian. Providing a Hessian can yield a solution in fewer iterations.
For example, see “Compare to Optimization Without Gradients and Hessians” on page 6-
91.

For constrained problems, providing a gradient has another advantage. A solver can
reach a point x such that x is feasible, but, for this x, finite differences around x always
lead to an infeasible point. Suppose further that the objective function at an infeasible
point returns a complex output, Inf, NaN, or error. In this case, a solver can fail or halt
prematurely. Providing a gradient allows a solver to proceed. To obtain this benefit, you
might also need to include the gradient of a nonlinear constraint function, and set the
SpecifyConstraintGradient option to true. See “Nonlinear Constraints” on page 2-
48.
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Choose Input Hessian Approximation for interior-point fmincon

The fmincon interior-point algorithm has many options for selecting an input
Hessian approximation. For syntax details, see “Hessian as an Input” on page 15-73.
Here are the options, along with estimates of their relative characteristics.

Hessian Relative Memory Usage Relative Efficiency
'bfgs' (default) High (for large problems) High
'lbfgs' Low to Moderate Moderate
'fin-diff-grads' Low Moderate
'HessianMultiplyFcn' Low (can depend on your Moderate

code)
'"HessianFcn' ? (depends on your code) High (depends on your code)

Use the default 'bfgs' Hessian unless you

*  Run out of memory — Try '1bfgs' instead of 'bfgs'. If you can provide your own
gradients, try ' fin-diff-grads', and set the SpecifyObjectiveGradient and
SpecifyConstraintGradient options to true.

* Want more efficiency — Provide your own gradients and Hessian. See “Including
Hessians” on page 2-27, “fmincon Interior-Point Algorithm with Analytic Hessian” on
page 6-51, and “Symbolic Math Toolbox Calculates Gradients and Hessians” on page
6-80.

The reason '1bfgs' has only moderate efficiency is twofold. It has relatively expensive
Sherman-Morrison updates. And the resulting iteration step can be somewhat inaccurate
due to the '1bfgs' limited memory.

The reason 'fin-diff-grads' and HessianMultiplyFcn have only moderate
efficiency is that they use a conjugate gradient approach. They accurately estimate the
Hessian of the objective function, but they do not generate the most accurate iteration
step. For more information, see “fmincon Interior Point Algorithm” on page 6-38, and its
discussion of the LDL approach and the conjugate gradient approach to solving
“Equation 6-52” on page 6-40.
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See Also

More About
“Checking Validity of Gradients or Jacobians” on page 2-81
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Writing Vector and Matrix Objective Functions

Some solvers, such as fsolve and 1sqcurvefit, have objective functions that are
vectors or matrices. The main difference in usage between these types of objective
functions and scalar objective functions on page 2-22 is the way to write their
derivatives. The first-order partial derivatives of a vector-valued or matrix-valued
function is called a Jacobian; the first-order partial derivatives of a scalar function is
called a gradient.

For information on complex-valued objective functions, see “Complex Numbers in
Optimization Toolbox Solvers” on page 2-19.

In this section...

“Jacobians of Vector Functions” on page 2-34

“Jacobians of Matrix Functions” on page 2-35

“Jacobians with Matrix-Valued Independent Variables” on page 2-36

Jacobians of Vector Functions

If x is a vector of independent variables, and F(x) is a vector function, the Jacobian J(x) is
dF:(x)
J(x)=—1—.
v axj

If F has m components, and x has k£ components, </ is an m-by-k matrix.

For example, if

2
F(x) _ ‘ xl + .')C2 .X'3 ’
| sin(x; + 2x9 — 3x3)
then J(x) is
_ 2x1 X3 X9
J(x) = .
| cos (% +2xp —3x3) 2cos(xy +2x2 —3x3) —3cos(xy +2x2 —3x3)

The function file associated with this example is:

function [F jacF] = vectorObjective (x)
F = [x(1)"2 + x(2)*x(3);
sin(x (1) + 2*x(2) - 3*x(3))1;
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if nargout > 1 % need Jacobian
jackF = [2 *X(l) x(3),x(2);
cos (x(1)+2*x(2)-3*x(3)),2*cos (x(1)+2*x(2)-3*x(3)),
-3*cos (x(1)+2*x(2)-3*x(3))1;
end

To indicate to your solver that your objective function includes a Jacobian, set the
SpecifyObjectiveGradient option to true. For example,

options = optimptions('lsgnonlin', 'SpecifyObjectiveGradient', true);

Jacobians of Matrix Functions

The Jacobian of a matrix F(x) is defined by changing the matrix to a vector, column by
column. For example, rewrite the matrix

Fi P
F=|Fy Fy
F31 Fgy

as a vector f:

The Jacobian of F'is as the Jacobian of f,
13) axj *
If F'is an m-by-n matrix, and x is a k-vector, the Jacobian is an mn-by-k matrix.

For example, if
XX xio’ + 3x22
F(x)= 5x2—x{1 X9 /% |,

4—x§ x?—xg
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then the Jacobian of F'is

X2 X1
—4x13 5
0 —2x9
I = 3x12 6x9

—xz/x% 1/x

3x12 —4x§ |

Jacobians with Matrix-Valued Independent Variables

If x is a matrix, define the Jacobian of F(x) by changing the matrix x to a vector, column
by column. For example, if

X X
X = { 11 12}’
Xo1 %22

then the gradient is defined in terms of the vector

11
x= 21 .
X12
X922
With
B, By
F=|F Fp|
F3, Fg
and with f the vector form of F as above, the Jacobian of F(X) is defined as the Jacobian
of f(x):
of;
J..=—L.
j ax A

J

So, for example,
Jof (3) _ dF3

_ Of(5) _ Oy
0x(2) 09Xy’

J(3,2)= w(4) Xy

and J(54) =
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If F'is an m-by-n matrix and x is a j-by-k matrix, then the Jacobian is an mn-by-jk
matrix.

See Also

More About
“Checking Validity of Gradients or Jacobians” on page 2-81
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Writing Objective Functions for Linear or Quadratic Problems

2-38

The following solvers handle linear or quadratic objective functions:

linprog and intlinprog: minimize
f'x=£(1)*x(1) + £(2)*x(2) +...+ £(n)*x(n).

Input the vector f for the objective. See the examples in “Linear Programming and
Mixed-Integer Linear Programming”.

1sglin and 1sgnonneg: minimize
[lcx - 4.

Input the matrix C and the vector d for the objective. See “Linear Least Squares with
Bound Constraints” on page 11-24.

quadprog: minimize
1/2 * x'Hx+f'x

=1/2 * (x(1)*H(1,1)*x (1) + 2*x(1)*H(1,2)*x(2) +...
+ x(n)*H(n,n)*x(n)) + £(1)*x(1) + £(2)*x(2) +...+ £(n)*x(n).

Input both the vector £ and the symmetric matrix H for the objective. See “Quadratic
Programming”.



Maximizing an Objective

Maximizing an Obijective

All solvers attempt to minimize an objective function. If you have a maximization
problem, that is, a problem of the form

max f(x),
X
then define g(x) = —f(x), and minimize g.

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate:

[x fval] = fminunc(Q (x)-tan (cos(x)),5)
Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.
6.2832

fval =
-1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at x = 6.2832.

This answer is correct since, to five digits, the maximum is tan(1) = 1.5574, which occurs
at x = 2m = 6.2832.
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Matrix Arguments

2-40

Solvers accept matrix initial point x0, where matrix means an array of any size. They
also accept matrix bounds 1b and ub. Here’s how solvers handle matrix arguments.

Internally, solvers convert matrix arguments into vectors before processing. For
example, x0 becomes x0 (:). For an explanation of this syntax, see the A (:) entry in
colon.

For output, solvers reshape the solution x to the same size as the input x0.

When x0 is a matrix, solvers pass x as a matrix of the same size as x0 to both the
objective function and to any nonlinear constraint function.

Linear constraints on page 2-46, though, take x in vector form, x (:). In other words,
a linear constraint of the form

A*x < borAeg*x = beq

takes x as a vector, not a matrix. Ensure that your matrix A or Aeqg has the same
number of columns as x0 has elements, or the solver will error.
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Types of Constraints

Optimization Toolbox solvers have special forms for constraints:
* “Bound Constraints” on page 2-44 — Lower and upper bounds on individual
components: x > [ and x < u.

*  “Linear Inequality Constraints” on page 2-46 — A x < b. A is an m-by-n matrix,
which represents m constraints for an n-dimensional vector x. b is m-dimensional.

* “Linear Equality Constraints” on page 2-47 — Aeq x = beq. Equality constraints have
the same form as inequality constraints.

+ “Nonlinear Constraints” on page 2-48 — c¢(x) <0 and ceq(x) = 0. Both ¢ and ceq are
scalars or vectors representing several constraints.

Optimization Toolbox functions assume that inequality constraints are of the form c;(x) <
0 or A x < b. Express greater-than constraints as less-than constraints by multiplying
them by —1. For example, a constraint of the form c¢;(x) > 0 is equivalent to the constraint
—c;(x) <0. A constraint of the form A «x > b is equivalent to the constraint -A x <-b. For
more information, see “Linear Inequality Constraints” on page 2-46 and “Nonlinear
Constraints” on page 2-48.

You can sometimes write constraints in several ways. For best results, use the lowest
numbered constraints possible:

Bounds

Linear equalities

Linear inequalities

Nonlinear equalities

a b~ WON =

Nonlinear inequalities

For example, with a constraint 5 x < 20, use a bound x < 4 instead of a linear inequality
or nonlinear inequality.

For information on how to pass extra parameters to constraint functions, see “Passing
Extra Parameters” on page 2-64.
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Iterations Can Violate Constraints

2-42

In this section...

“Intermediate Iterations can Violate Constraints” on page 2-42
“Algorithms That Satisfy Bound Constraints” on page 2-42
“Solvers and Algorithms That Can Violate Bound Constraints” on page 2-42

Intermediate Iterations can Violate Constraints

Be careful when writing your objective and constraint functions. Intermediate iterations
can lead to points that are infeasible (do not satisfy constraints). If you write objective or
constraint functions that assume feasibility, these functions can error or give unexpected
results.

For example, if you take a square root or logarithm of x, and x < 0, the result is not real.
You can try to avoid this error by setting 0 as a lower bound on x. Nevertheless, an
intermediate iteration can violate this bound.

Algorithms That Satisfy Bound Constraints

Some solver algorithms satisfy bound constraints at every iteration:

* fmincon interior-point, sqp, and trust-region-reflective algorithms
* lsqgcurvefit trust-region-reflective algorithm
* 1lsgnonlin trust-region-reflective algorithm

« fminbnd

Note If you set a lower bound equal to an upper bound, iterations can violate these
constraints.

Solvers and Algorithms That Can Violate Bound Constraints

The following solvers and algorithms can violate bound constraints at intermediate
iterations:



See Also

* fmincon active-set algorithm
+ fgoalattain solver
* fminimax solver

*+ fseminf solver

See Also

More About

. “Bound Constraints” on page 2-44
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Bound Constraints

2-44

Lower and upper bounds limit the components of the solution x.

If you know bounds on the location of an optimum, you can obtain faster and more
reliable solutions by explicitly including these bounds in your problem formulation.

Give bounds as vectors with the same length as x, or as matrices on page 2-40 with the
same number of elements as x.

+ If a particular component has no lower bound, use -Inf as the bound; similarly, use
Inf if a component has no upper bound.

+ If you have only bounds of one type (upper or lower), you do not need to write the
other type. For example, if you have no upper bounds, you do not need to supply a
vector of Infs.

+ If only the first m out of n components have bounds, then you need only supply a
vector of length m containing bounds. However, this shortcut causes solvers to throw
a warning.

For example, suppose your bounds are:

X3Z8
DCQ§3

Write the constraint vectors as

1l = [-Inf; -Inf; 8]
u = [Inf; 3] (throws a warning) oru = [Inf; 3; Inf].

Tip Use Inf or -Inf instead of a large, arbitrary bound to lower memory usage and
increase solver speed. See “Use Inf Instead of a Large, Arbitrary Bound” on page 4-12.

You need not give gradients for bound constraints; solvers calculate them automatically.
Bounds do not affect Hessians.

For a more complex example of bounds, see “Set Up a Linear Program, Solver-Based” on
page 1-12.
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See Also

More About

“Tterations Can Violate Constraints” on page 2-42
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Linear Constraints

2-46

In this section...

“Linear Inequality Constraints” on page 2-46

“Linear Equality Constraints” on page 2-47

Linear Inequality Constraints

Linear inequality constraints have the form A x < b. When A is m-by-n, there are m
constraints on a variable x with n components. You supply the m-by-n matrix A and the
m-component vector b.

Even if you pass an initial point x0 as a matrix, solvers pass the current point x as a
column vector to linear constraints. See “Matrix Arguments” on page 2-40.

For example, suppose that you have the following linear inequalities as constraints:
X, +x354,

2x2 — x3 2 —2,

X1 — X9+ X3 —x4>9.

Here m =3 and n = 4.

Write these using the following matrix A and vector b:

1 0 1 0
A=|0 =2 1 0],
11 -1 1
4
b=| 2
-9

Notice that the “greater than” inequalities were first multiplied by —1 in order to get
them into “less than” inequality form. In MATLAB syntax:

A= ([1010;

0 -21 0;
-1 1 -1 173;
b= [4;2;-9];




Linear Constraints

You do not need to give gradients for linear constraints; solvers calculate them
automatically. Linear constraints do not affect Hessians.

For a more complex example of linear constraints, see “Set Up a Linear Program, Solver-
Based” on page 1-12.

Linear Equality Constraints

Linear equalities have the form Aeq x = beq, which represents m equations with n-
component vector x. You supply the m-by-n matrix Aeq and the m-component vector beq.

You do not need to give gradients for linear constraints; solvers calculate them
automatically. Linear constraints do not affect Hessians. The form of this type of
constraint is the same as for “Linear Inequality Constraints” on page 2-46.
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Nonlinear Constraints

2-48

Nonlinear inequality constraints have the form c¢(x) < 0, where c is a vector of constraints,
one component for each constraint. Similarly, nonlinear equality constraints are of the
form ceq(x) = 0.

Note Nonlinear constraint functions must return both c and ceq, the inequality and
equality constraint functions, even if they do not both exist. Return an empty entry [ ]
for a nonexistent constraint.

For example, suppose that you have the following inequalities as constraints:

2 2
X X
22 <
9 4
X9 Zx%—l.

Write these constraints in a function file as follows:

function [c,ceqg]l=ellipseparabola (x)

c(l) = (x(1)"2)/9 + (x(2)"2)/4 - 1;
c(2) = x(1)"2 - x(2) - 1;

ceq = [];

end

ellipseparabola returns an empty entry [] for ceq, the nonlinear equality function.
Also, both inequalities were put into < 0 form.

Including Gradients in Constraint Functions

If you provide gradients for ¢ and ceq, your solver can run faster and give more reliable
results.

Providing a gradient has another advantage. A solver can reach a point x such that x is
feasible, but finite differences around x always lead to an infeasible point. In this case, a
solver can fail or halt prematurely. Providing a gradient allows a solver to proceed.

To include gradient information, write a conditionalized function as follows:

function [c,ceq,gradc,gradceqg]=ellipseparabola (x)
c(l) = x(1)72/9 + x(2)"2/4 - 1;
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c(2) = x(1)"2 - x(2) - 1;
ceq = [];
if nargout > 2
gradc = [2*x(1)/9, 2*x(1);
x(2)/2, -11;

gradceq = [];
end

See “Writing Scalar Objective Functions” on page 2-22 for information on conditionalized
functions. The gradient matrix has the form

gradc; ; = [0c(j)/ox;].

The first column of the gradient matrix is associated with c (1), and the second column
1s associated with c (2). This is the transpose of the form of Jacobians.

To have a solver use gradients of nonlinear constraints, indicate that they exist by using
optimoptions:

options = optimoptions (@fmincon, 'SpecifyConstraintGradient', true);
Make sure to pass the options structure to your solver:

[x,fval] = fmincon (@myobj,x0,A,b,Aeq,beq, 1b,ub,
@ellipseparabola,options)

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians

automatically, as described in “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-80.

Anonymous Nonlinear Constraint Functions

For information on anonymous objective functions, see “Anonymous Function Objectives”
on page 2-24.

Nonlinear constraint functions must return two outputs. The first output corresponds to
nonlinear inequalities, and the second corresponds to nonlinear equalities.

Anonymous functions return just one output. So how can you write an anonymous
function as a nonlinear constraint?
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The deal function distributes multiple outputs. For example, suppose your nonlinear
inequalities are

2 2

Xl X

9 4
X9 Zx%—l.

Suppose that your nonlinear equality is
Xy = tanh(x,).

Write a nonlinear constraint function as follows:

c = @(x)[x(1)"2/9 + x(2)"2/4 - 1;

x(1)"2 - x(2) - 1];
ceq = @(x)tanh(x(1)) - x(2);
nonlinfcn = @(x)deal (c(x),ceq(x));

To minimize the function cosh(x;) + sinh(x,) subject to the constraints in nonlinfcn, use
fmincon:

obj = @(x)cosh(x(1l))+sinh(x(2));
opts = optimoptions (@fmincon, 'Algorithm', 'sqgp');
z = fmincon (obj, [0;0],[1,[1,[1,[1,[]1,[],nonlinfcn,opts)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.
7 =

-0.6530

-0.5737

To check how well the resulting point z satisfies the constraints, use nonlinfcn:
[cout,cegout] = nonlinfcn(z)
cout =

-0.8704
0
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cegout =
0

z indeed satisfies all the constraints to within the default value of the
ConstraintTolerance constraint tolerance, 1e-6.
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Or Instead of And Constraints

2-52

In general, solvers takes constraints with an implicit AND:
constraint 1 AND constraint 2 AND constraint 3 are all satisfied.
However, sometimes you want an OR:

constraint 1 OR constraint 2 OR constraint 3 is satisfied.

These formulations are not logically equivalent, and there is generally no way to express
OR constraints in terms of AND constraints.

Tip Fortunately, nonlinear constraints are extremely flexible. You get OR constraints
simply by setting the nonlinear constraint function to the minimum of the constraint
functions.

The reason that you can set the minimum as the constraint is due to the nature of
“Nonlinear Constraints” on page 2-48: you give them as a set of functions that must be
negative at a feasible point. If your constraints are

Fi(x) <0 OR Fy(x) <0 OR Fy(x) <0,
then set the nonlinear inequality constraint function c(x) as:
c(x) = min(F(x),Fy(x), F5(x)).

¢(x) 1s not smooth, which is a general requirement for constraint functions, due to the
minimum. Nevertheless, the method often works.

Note You cannot use the usual bounds and linear constraints in an OR constraint.
Instead, convert your bounds and linear constraints to nonlinear constraint functions, as
in this example.

For example, suppose your feasible region is the L-shaped region: x is in the rectangle —
1<x(1)<1,0<x(2)<1O0R xisin the rectangle 0 <x(1) <1, -1 <x(2) < 1.
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|
0.5F .
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Code for creating the figure

oe

Write the x and y coordinates of the figure, clockwise from (0,0)
= [0,-1,-1,1,1,0,0];

y = [0,0,1,1,-1,-1,0];

plot(x,vy)

x1lim([-1.2 1.2])

ylim([-1.2 1.2])

axis equal

X

To represent a rectangle as a nonlinear constraint, instead of as bound constraints,
construct a function that is negative inside the rectangle a <x(1) < b, ¢ <x(2) < d:
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function cout = rectconstr(x,a,b,c,d)
% Negative when x is in the rectangle [a,b][c,d]
% First check that a,b,c,d are in the correct order

if (b <= a) || (d <= ¢)
error ('Give a rectangle a < b, c < d')
end

cout = max ([ (x(1)-b), (x(2)-d), (a-x (1)), (c-x(2))]);

Following the prescription of using the minimum of nonlinear constraint functions, for
the L-shaped region, the nonlinear constraint function is:

function [c,ceq] = rectconstrfcn (x)

ceq = []; % no equality constraint

F(l) = rectconstr(x,-1,1,0,1); % one rectangle
F(2) = rectconstr(x,0,1,-1,1); % another rectangle
c = min(F); % for OR constraints

o)

2-54



Or Instead of And Constraints

4115

Code for creating the figure

Plot rectconstrfcn over the region max|x| <2fora=-1,b=1,¢=0,d=1:

[xx,yy] = meshgrid(-2:.1:2);
x = [xx(:),yy(:)]; % one row per point

z = zeros (length(x),1l); % allocate
for ii = 1l:length(x)

[z(ii),~] = rectconstrfcn(x(ii,:));
end

z = reshape(z,size(xx));
surf (xx,vy, z)
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colorbar

axis equal

xlabel ('x");ylabel ('y")

view (0, 90)

Suppose your objective function is

fun = @(x)exp(x(l)) * (4*x(1)"2 + 2*x(2)"2 + 4*x(1l)*x(2) + 2*x(2) + 1);
Minimize fun over the L-shaped region:

opts = optimoptions (@fmincon, 'Algorithm', 'interior-point', 'Display', 'off");
x0 = [-.5,.6]; % an arbitrary guess

[xsol, fval,eflag] = fmincon(fun,x0,[],[],[],[],[],[],@rectconstrfcn,opts)

Xxsol =

0.4998 -0.9996

fval =

2.4650e-07

eflag =

Clearly, the solution xsol is inside the L-shaped region. The exit flag is 1, indicating
that xso1l is a local minimum.
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How to Use All Types of Constraints

This section contains an example of a nonlinear minimization problem with all possible
types of constraints. The objective function is in the local function myob7 (x). The
nonlinear constraints are in the local function myconstr (x). This example does not use

gradients.
function [x fval exitflag] = fullexample
x0 = [1; 4; 5; 2; 5];
1lb = [-Inf; -Inf; 0; -Inf; 11;
ub = [ Inf; Inf; 20; Inf; Inf];
RAeqg = [1 -0.3 0 0 0];
beq = 0;
A=[00 0-1 0.1
00 0 1 -0.5
00-1 0 0.91;
b = [0; 0; 0];
opts = optimoptions (@fmincon, 'Algorithm', 'sgp');

[x,fval,exitflag]=fmincon (@myobj,x0,A,b, Aeq,beq,lb,ub, ...
@myconstr, opts)

function [c, ceqg] = myconstr (x)

c = [x(l) - 0.2*x(2)*x(5) - 71
0.9*x(3) - x(4)"2 - 67];
ceq = 3*x(2)72*x(5) + 3*x(1)"2*x(3) - 20.875;
Calling fullexample produces the following display in the Command Window:
[x fval exitflag] = fullexample;
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.
x =

0.6114
2.0380
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1.3948
0.1572
1.5498

fval =
37.3806

exitflag =
1
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Objective and Nonlinear Constraints in the Same Function

This example shows how to avoid calling a function twice when it computes values for
both objective and constraints.

You typically use such a function in a simulation. Solvers such as fmincon evaluate the
objective and nonlinear constraint functions separately. This evaluation is wasteful when
you use the same calculation for both results.

To avoid wasting time, have your calculation use a nested function to evaluate the
objective and constraint functions only when needed, by retaining the values of time-
consuming calculations. Using a nested function avoids using global variables, yet lets
intermediate results be retained and shared between the objective and constraint
functions.

Step 1. Function that computes objective and constraints.

For example, suppose computeall is the expensive (time-consuming) function called by
both the objective function and by the nonlinear constraint functions. Suppose you want
to use fmincon as your optimizer.

Write a function that computes a portion of Rosenbrock’s function £1 and a nonlinear
constraint c1 that keeps the solution in a disk of radius 1 around the origin.
Rosenbrock’s function is

2
F(2)=100(xy a7 | +(1-x)?,
which has a unique minimum value of 0 at (1,1). See “Solve a Constrained Nonlinear
Problem” on page 1-3.

In this example there is no nonlinear equality constraint, so ceql = [].Add a
pause (1) statement to simulate an expensive computation.

function [fl,cl,ceqgl] = computeall (x)
ceql = [];
cl = norm(x)"2 - 1;
fl = 100*(x(2) - x(1)"2)"2 + (1-x(1))"2;
pause(l) % simulate expensive computation
end

Save computeall.m as a file on your MATLAB path.
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Step 2. Embed function in nested function that keeps recent values.

Suppose the objective function is

¥ =100(x; — %)% + (1 — x7)?
+20% (x5 — x4%)2 + 5*(1 — x9)%

computeall returns the first part of the objective function. Embed the call to
computeall in a nested function:

function [x,f,eflag,outpt] = runobjconstr (x0,opts)
if nargin == % No options supplied
opts = [];
end
xLast = []; % Last place computeall was called
myf = []; % Use for objective at xLast
myc = []; % Use for nonlinear inequality constraint
myceq = []; % Use for nonlinear equality constraint
fun = @objfun; % the objective function, nested below
cfun = @constr; % the constraint function, nested below

% Call fmincon
[x,f,eflag,outpt] = fmincon (fun,x0,[1,[]1,[1,[1,[]1,[],cfun,opts);
function y = objfun(x)
if ~isequal (x,xLast) % Check if computation is necessary
[myf,myc,myceq] = computeall (x);
xLast = x;
end
% Now compute objective function
y = myf + 20%(x(3) - x(4)72)"2 + 5*(1 - x(4))"2;

end
function [c,ceq] = constr (x)
if ~isequal (x,xLast) % Check if computation is necessary
[myf,myc,myceq] = computeall (x);
xLast = x;
end

% Now compute constraint functions
c = myc; $ In this case, the computation is trivial
ceq = myceq;
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end
end
Save the nested function as a file named runobjconstr.mon your MATLAB path.
Step 3. Time to run with nested function.

Run the file, timing the call with tic and toc.

opts = optimoptions (@fmincon, 'Algorithm', 'interior-point', 'Display', 'off');

x0 = [-1,1,1,2];

tic

[x,fval,exitflag,output] = runobjconstr (x0,opts);
toc

Elapsed time is 203.797275 seconds.
Step 4. Time to run without nested function.

Compare the times to run the solver with and without the nested function. For the run
without the nested function, save myrosen2 .m as the objective function file, and
constr.m as the constraint:

function y = myrosen2 (x)
fl = computeall (x); % get first part of objective
y = f1 + 20*(x(3) - x(4)"2)"2 + 5*(1 - x(4))"2;

end

function [c,ceq] = constr (x)
[~,c,ceq] = computeall (x);

end

Run fmincon, timing the call with tic and toc.

tic

[x,fval,exitflag,output] = fmincon (@myrosen2,x0, ...
[]r []/ []r []/ []r [],@Constr,opts);

toc

Elapsed time is 406.771978 seconds.

The solver takes twice as long as before, because it evaluates the objective and constraint
separately.
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Step 5. Save computing time with parallel computing.

If you have a Parallel Computing Toolbox license, you can save even more time by setting

the UseParallel option to true.
parpool
Starting parallel pool (parpool) using the 'local' profile
ans =
Pool with properties:

Connected: true
NumWorkers: 4
Cluster: local
AttachedFiles: {}
IdleTimeout: 30 minute(s) (30 minutes remaining)
SpmdEnabled: true

opts = optimoptions (opts, 'UseParallel’', true);

tic

[x,fval,exitflag,output] = runobjconstr (x0,opts);
toc

Elapsed time is 97.528110 seconds.

connected to 4 workers.

In this case, enabling parallel computing cuts the computational time in half.

Compare the runs with parallel computing, with and without a nested function:

tic

[x,fval,exitflag,output] = fmincon (@myrosen2,x0, ...
[]I []I []I []I []I [],@Constrlopts)r‘

toc

Elapsed time is 188.985178 seconds.



See Also

In this example, computing in parallel but not nested takes about the same time as

computing nested but not parallel. Computing both nested and parallel takes half the
time of using either alone.

See Also

Related Examples

. “Solve a Constrained Nonlinear Problem” on page 1-3

More About

“Optimizing a Simulation or Ordinary Differential Equation” on page 4-31

. “Parallel Computing”
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Extra Parameters, Fixed Variables, or Data

Sometimes objective or constraint functions have parameters in addition to the
independent variable. The extra parameters can be data, or can represent variables that
do not change during the optimization. There are three methods of passing these
parameters:

* “Anonymous Functions” on page 2-64

* “Nested Functions” on page 2-66

* “Global Variables” on page 2-67

Global variables are troublesome because they do not allow names to be reused among
functions. It is better to use one of the other two methods.

For example, suppose you want to minimize the function

fx) = (a—bx12 + i /3)x12 + X Xg +(—c +cx§)x§

for different values of a, b, and ¢. Solvers accept objective functions that depend only on a
single variable (x in this case). The following sections show how to provide the additional
parameters a, b, and c. The solutions are for parameter valuesa =4, b=2.1,andc=4
near x, = [0.5 0.5] using fminunc.

Anonymous Functions

To pass parameters using anonymous functions:
1  Write a file containing the following code:

function y = parameterfun(x,a,b,c)
vy = (a - b*x(1)"2 + x(1)"4/3)*x(1)"2 + x(1)*x(2) + ...
(—c + c*x(2)"2)*x(2)"2;
2  Assign values to the parameters and define a function handle £ to an anonymous
function by entering the following commands at the MATLAB prompt:
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a =4; b=2.1; ¢ = 4; % Assign parameter values
x0 = [0.5,0.5];
f = @(x)parameterfun(x,a,b,c);

3 Call the solver fminunc with the anonymous function:
[x,fval] = fminunc(f,x0)
The following output is displayed in the command window:
Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

% =
-0.0898 0.7127

fval =
-1.0316

Note The parameters passed in the anonymous function are those that exist at the time
the anonymous function is created. Consider the example

a=4; b=2.1; ¢c = 4;
f = @(x)parameterfun(x,a,b,c)

Suppose you subsequently change, a to 3 and run
[x,fval] = fminunc (f, x0)

You get the same answer as before, since parameterfun uses a = 4, the value when £
was created.

To change the parameters that are passed to the function, renew the anonymous function
by reentering it:

a = 3;
f = @(x)parameterfun(x,a,b,c)

You can create anonymous functions of more than one argument. For example, to use
lsgcurvefit, first create a function that takes two input arguments, x and xdata:
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fh = @(x,xdata) (sin(x) .*xdata +(x.72).*cos (xdata)) ;
x = pi; xdata = pi*[4;2;3];
fh (x, xdata)

ans =

9.8696
9.8696
-9.8696

Now call 1sgcurvefit:

% Assume ydata exists
x = lsqgcurvefit (fh, x,xdata, ydata)

Nested Functions

To pass the parameters for “Equation 2-3” on page 2-64 via a nested function, write a
single file that

+ Accepts a, b, c, and x0 as inputs
*  Contains the objective function as a nested function

+ Calls fminunc

Here is the code for the function file for this example:

function [x,fval] = runnested(a,b,c,x0)
[x,fval] = fminunc (@nestedfun,x0);
% Nested function that computes the objective function
function y = nestedfun (x)
y = (a - b*x(1)"2 + x(1)"4/3)*x(1)"2 + x(1)*x(2) +...
(-c + c*x(2)"2)*x(2)"2;
end
end

The objective function is the nested function nestedfun, which has access to the
variables a, b, and c.

To run the optimization, enter:

a =4; b=2.1; ¢ = 4;% Assign parameter values
x0 = [0.5,0.5];
[x,fval] = runnested(a,b,c,x0)

2-66



Passing Extra Parameters

The output is the same as in “Anonymous Functions” on page 2-64.

Global Variables

Global variables can be troublesome, so it is better to avoid using them. To use global
variables, declare the variables to be global in the workspace and in the functions that
use the variables.

1

Write a function file:

function y = globalfun (x)

global a b ¢

vy = (a - b*x(1)"2 + x(1)"4/3)*x(1)"2 + x(1)*x(2) + ...
(-c + c*x(2)"2)*x(2)"2;

In your MATLAB workspace, define the variables and run fminunc:

global a b c;

a=4; b =2.1; ¢ = 4; % Assign parameter values
x0 = [0.5,0.5];

[x,fval] = fminunc(@globalfun, x0)

The output is the same as in “Anonymous Functions” on page 2-64.

2-67



2 Setting Up an Optimization

What Are Options?

2-68

Options are a way of combining a set of name-value pairs. They are useful because they
allow you to:

*  Tune or modify the optimization process.
+  Select extra features, such as output functions and plot functions.

* Save and reuse settings.

They simplify solver syntax—you don’t have to include a lot of name-value pairs in a call
to a solver.

To see how to set and change options, see “Set and Change Options” on page 2-70.

For an overview of all options, including which solvers use each option, see “Optimization
Options Reference” on page 14-8.
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Options in Common Use: Tuning and Troubleshooting

You set or change options when the default settings do not work sufficiently well. This
can mean the solver takes too long to converge, the solver fails, or you are unsure of the
reliability of the result.

To tune your solver for improved speed or accuracy, try setting these options first:

* “Choosing the Algorithm” on page 2-8 — Algorithm

* “Tolerances and Stopping Criteria” on page 2-78 — OptimalityTolerance,
StepTolerance, MaxFunctionEvaluations, and MaxIterations

* Finite differences — FiniteDifferenceType and FiniteDifferenceStepSize

To diagnose and troubleshoot, try setting these options first:

+  “Iterative Display” on page 3-15 — Display
*  Function evaluation errors — FunValCheck

* “Plot Functions” on page 3-29 and “Output Functions” on page 3-35 — PlotFcn
and OutputFcn

See Also

optimoptions | optimset

Related Examples

. “Improve Results”

More About
. “Solver Outputs and Iterative Display”
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Set and Change Options

The recommended way to set options is to use the optimoptions function. For example,
to set the fmincon algorithm to sqgp, set iterative display, and set a small value of the
ConstraintTolerance tolerance:

options = optimoptions('fmincon', ...
'Algorithm', 'sgp', 'Display', 'iter', 'ConstraintTolerance',le-12);

Note Use optimset instead of optimoptions for the fminbnd, fminsearch, fzero,
and 1sgnonneg solvers. These are the solvers that do not require an Optimization
Toolbox license.

Change options as follows:
* Dot notation. For example,

options.StepTolerance = 1le-10;

* optimoptions. For example,

options = optimoptions (options, 'StepTolerance',le-10);

* Reset an option to default using resetoptions. For example,

options = resetoptions (options, 'StepTolerance');

Reset more than one option at a time by passing a cell array of option names, such as
{'Algorithm', 'StepTolerance’}.

Note Ensure that you pass options in your solver call. For example,

[x,fval] = fmincon (@objfun,x0,[1,[1,[]1,[],1b,ub,@nonlcon,options);

You can also set and change options using the “Optimization App” on page 5-2.
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See Also

More About

“Optimization Options Reference” on page 14-8
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Choose Between optimoptions and optimset
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Previously, the recommended way to set options was to use optimset. Now the general
recommendation is to use optimoptions, with some caveats listed below.

optimset still works, and it is the only way to set options for solvers that are available
without an Optimization Toolbox license: fminbnd, fminsearch, fzero, and
lsgnonneg.

Note Some other toolboxes use optimization options and require you to pass in options
created using optimset, not optimoptions. Check the documentation for your
toolboxes.

optimoptions organizes options by solver, with a more focused and comprehensive
display than optimset:

* Creates and modifies only the options that apply to a solver
*  Shows your option choices and default values for a specific solver/algorithm

* Displays links for more information on solver options and other available solver
algorithms

intlinprog uses only optimoptions options.
The main difference in creating options is:

+ For optimoptions, you include the solver name as the first argument.

options = optimoptions (SolverName, Name,Value,...)

* For optimset, the syntax does not include the solver name.

options = optimset (Name,Value,...)

In both cases, you can query or change options by using dot notation. See “Set and
Change Options” on page 2-70 and “View Options” on page 2-76.

For example, compare the display of optimoptions to that of optimset.

options = optimoptions (@fminunc, 'SpecifyObjectiveGradient', true)
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options

fminunc options:

Options used by current Algorithm
(Other available algorithms:

Set properties:
SpecifyObjectiveGradient:

Default properties:
Algorithm:
CheckGradients:
Display:
FiniteDifferenceStepSize:
FiniteDifferenceType:
FunctionTolerance:
HessianFcn:
HessianMultiplyFcn:
MaxFunctionEvaluations:
MaxIterations:
OptimalityTolerance:
OutputFcn:
PlotFcn:
StepTolerance:
SubproblemAlgorithm:
TypicalX:

Show

options optimset ('GradObj',"

options
struct with fields:

[]
[]
[]
[]
[]
[]
[]
[]
[]

Display:
MaxFunEvals:
MaxIter:

TolFun:

TolX:
FunValCheck:
OutputFcn:
PlotFcns:
ActiveConstrTol:

options not used by current Algorithm

('trust-region'):
'quasi-newton')

1

'trust-region'

0

'final'

'sqgrt (eps) '

'forward'

1.0000e-006

[]

[]
'100*numberOfVariables"'
400

1.0000e-06

[]

[]

1.0000e-06

lcgl

'ones (numberOfVariables, 1)’

('trust-region')

on'")
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Algorithm:
AlwaysHonorConstraints:
DerivativeCheck:
Diagnostics:
DiffMaxChange:
DiffMinChange:
FinDiffRelStep:
FinDiffType:
GoalsExactAchieve:
GradConstr:

GradObj:

HessFcn:

Hessian:

HessMult:
HessPattern:
HessUpdate:
InitBarrierParam:
InitTrustRegionRadius:
Jacobian:

JacobMult:
JacobPattern:
LargeScale:
MaxNodes :
MaxPCGIter:
MaxProjCGIter:
MaxSQPIter:

MaxTime:
MeritFunction:
MinAbsMax :
NoStopIfFlatInfeas:
Objectivelimit:
PhaseOneTotalScaling:
Preconditioner:
PrecondBandWidth:
RelLineSrchBnd:
RellLineSrchBndDuration:
ScaleProblem:
Simplex:
SubproblemAlgorithm:
TolCon:

TolConSQP:
TolGradCon:

TolPCG:

TolProjCG:

2-74



Choose Between optimoptions and optimset

TolProjCGAbs: []
TypicalX: []
UseParallel: []
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View Options

optimoptions “hides” some options, meaning it does not display their values. For
example, it hides the Di ffMinChange option.

options = optimoptions('fsolve', 'DiffMinChange',le-3)
options =
fsolve options:

Options used by current Algorithm ('trust-region-dogleg'):
(Other available algorithms: 'levenberg-marquardt', 'trust-region')

Set properties:
No options set.

Default properties:
Algorithm: 'trust-region-dogleg'
CheckGradients: O
Display: 'final'

FiniteDifferenceStepSize: 'sqgrt (eps)'
FiniteDifferenceType: 'forward'
FunctionTolerance: 1.0000e-06
MaxFunctionEvaluations: '100*numberOfVariables'

MaxIterations: 400
OptimalityTolerance: 1.0000e-06
OutputFcn: []
PlotFcn: []
SpecifyObjectiveGradient: 0
StepTolerance: 1.0000e-06
TypicalX: 'ones (numberOfVariables,1)'
UseParallel: 0O

Show options not used by current Algorithm ('trust-region-dogleg')

You can view the value of any option, including “hidden” options, by using dot notation.
For example,

options.DiffMinChange
ans =

1.0000e-03
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Solver reference pages list “hidden” options in italics.
There are two reason that some options are “hidden”:

* There are better ways. For example, the FiniteDifferenceStepSize option
supersedes both the Di ffMinChange and Di f fMaxChange options. Therefore, both
DiffMinChange and DiffMaxChange are “hidden”.

* They are rarely used, or are difficult to set appropriately. For example, the fmincon
MaxSQPIter option is recondite and hard to choose, and so is “hidden”.

+ For a list of hidden options, see “Hidden Options” on page 14-21.

See Also

More About

. “Optimization Options Reference” on page 14-8
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Tolerances and Stopping Criteria

The number of iterations in an optimization depends on a solver's stopping criteria.
These criteria include several tolerances you can set. Generally, a tolerance is a
threshold which, if crossed, stops the iterations of a solver.

Set tolerances and other criteria using optimoptions as explained in “Set and Change
Options” on page 2-70.

Tip Generally set tolerances such as OptimalityTolerance and StepTolerance to be
well above eps, and usually above 1e-14. Setting small tolerances does not always
result in accurate results. Instead, a solver can fail to recognize when it has converged,
and can continue futile iterations. A tolerance value smaller than eps effectively disables
that stopping condition.

You can find the default tolerances in the “Optimization App” on page 5-2. Some
default tolerances differ for different algorithms, so set both the solver and the algorithm.

Problem Setup and Results Options
— - - R 1 [ [=] Stopping criteria o
Solver: fmincon - Constrained nonlinear minimization  »
) r - - 1 Max iterations: @ Use default: 1000
Algorithm: | Interior point % ]
Problem © Specify:
Objective function: A Max function evaluations: @ Use default: 3000
Derivatives: :Approximated by solver v: ) Specify:

2-78

optimoptions displays tolerances. For example,

options = optimoptions('fmincon');
[options.OptimalityTolerance,options.FunctionTolerance,options.StepTolerance]

ans =

1.0000 1.0000 0.0001

You can also find the default tolerances in the options section of the solver function
reference page.
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StepTolerance is a lower bound on the size of a step, meaning the norm of (x; — x;,4).
If the solver attempts to take a step that is smaller than StepTolerance, the
iterations end. StepTolerance is sometimes used as a relative bound, meaning
iterations end when | (x; — x;1;)| < StepTolerance*(1 + |x;|), or a similar relative
measure.

Iterations end
when the last step
is smaller than
FunctionTolerance
9 or StepTolerance

FunctionTolerance {

\

StepTolerance

For some algorithms, FunctionTolerance is a lower bound on the change in the
value of the objective function during a step. For those algorithms, if | f(x;) — f(x;1) | <
FunctionTolerance, the iterations end. FunctionTolerance is sometimes used as
a relative bound, meaning iterations end when | f(x;) — f(x;11) |

< FunctionTolerance*(1 + |f(x;)|), or a similar relative measure.

Note Unlike other solvers, fminsearch stops when it satisfies both TolFun (the
function tolerance) and TolX (the step tolerance).

OptimalityTolerance is a tolerance for the first-order optimality measure. If the
optimality measure is less than OptimalityTolerance, the iterations end.
OptimalityTolerance can also be a relative bound on the first-order optimality
measure. First-order optimality measure is defined in “First-Order Optimality
Measure” on page 3-11.

ConstraintTolerance is an upper bound on the magnitude of any constraint
functions. If a solver returns a point x with ¢(x) > ConstraintTolerance or |ceq(x)|
> ConstraintTolerance, the solver reports that the constraints are violated at x.

ConstraintTolerance can also be a relative bound.
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Note ConstraintTolerance operates differently from other tolerances. If
ConstraintTolerance is not satisfied (i.e., if the magnitude of the constraint
function exceeds ConstraintTolerance), the solver attempts to continue, unless it
is halted for another reason. A solver does not halt simply because
ConstraintTolerance is satisfied.

* MaxIterations is a bound on the number of solver iterations.
MaxFunctionEvaluations is a bound on the number of function evaluations.
Iterations and function evaluations are discussed in “Iterations and Function Counts”
on page 3-10.

There are two other tolerances that apply to particular solvers: To1PCG and
MaxPCGIter. These relate to preconditioned conjugate gradient steps. For more
information, see “Preconditioned Conjugate Gradient Method” on page 6-24.

There are several tolerances that apply only to the fmincon interior-point algorithm. For
more information, see Interior-Point Algorithm in fmincon options.

There are several tolerances that apply only to intlinprog. See “Some “Integer”
Solutions Are Not Integers” on page 8-44 and “Branch and Bound” on page 8-38.

See Also

More About

. “Optimization Options Reference” on page 14-8
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Checking Validity of Gradients or Jacobians

In this section...

“Check Gradient or Jacobian in Objective Function” on page 2-81

“How to Check Derivatives” on page 2-81

“Example: Checking Derivatives of Objective and Constraint Functions” on page 2-82

Check Gradient or Jacobian in Objective Function

Many solvers allow you to supply a function that calculates first derivatives (gradients or
Jacobians) of objective or constraint functions. You can check whether the derivatives
calculated by your function match finite-difference approximations. This check can help
you diagnose whether your derivative function is correct.

+ If a component of the gradient function is less than 1, “match” means the absolute
difference of the gradient function and the finite-difference approximation of that
component is less than le-6.

+  Otherwise, “match” means that the relative difference is less than 1e-6.

The CheckGradients option causes the solver to check the supplied derivative against a
finite-difference approximation at just one point. If the finite-difference and supplied
derivatives do not match, the solver errors. If the derivatives match to within 1e-6, the
solver reports the calculated differences, and continues iterating without further
derivative checks. Solvers check the match at a point that is a small random
perturbation of the initial point x0, modified to be within any bounds. Solvers do not
include the computations for CheckGradients in the function count; see “Iterations and
Function Counts” on page 3-10.

How to Check Derivatives

+ At the MATLAB command line:

1 Set the SpecifyObjectiveGradient or SpecifyConstraintGradient
options to true using optimoptions. Make sure your objective or constraint
functions supply the appropriate derivatives.

2 Set the CheckGradients option to true.
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+ Using the Optimization app:

1 In the Problem Setup and Results pane, choose Derivatives: Objective
function: Gradient supplied or Nonlinear constraint function:
Derivatives: Gradient supplied. Make sure your objective or constraint
functions supply the appropriate derivatives.

2 Inthe Options pane, check User-supplied derivatives > Validate user-
supplied derivatives

Central finite differences are more accurate than the default forward finite differences.
To use central finite differences:

+ At the MATLAB command line, set FiniteDifferenceType option to 'central’
using optimoptions.

+ Using the Optimization app, in the Approximated derivatives pane, set Type to
central differences.

Example: Checking Derivatives of Objective and Constraint Functions

* “Objective and Constraint Functions” on page 2-82
*  “Checking Derivatives at the Command Line” on page 2-83

* “Checking Derivatives with the Optimization App” on page 2-85
Objective and Constraint Functions

Consider the problem of minimizing the Rosenbrock function within the unit disk as
described in “Solve a Constrained Nonlinear Problem” on page 1-3. The rosenboth
function calculates the objective function and its gradient:

function [f g H] = rosenboth (x)
f = 100*%(x(2) - x(1)"2)"2 + (1-x(1))"2;
if nargout > 1
g = [-400*% (x(2)-x(1)"2)*x(1)-2*(1-x(1));
200*% (x(2)-x(1)"2)1;
if nargout > 2

H = [1200*x(1)"2-400*x(2)+2, -400*x(1);
-400*x (1), 2001;
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end
end

rosenboth calculates the Hessian, too, but this example does not use the Hessian.

The unitdisk2 function correctly calculates the constraint function and its gradient:

function [c,ceq,gc,gceq] = unitdisk2 (x)
c=x(1)"2 + x(2)"2 - 1;
ceq = [ 1;

if nargout > 2
gc = [2*x(1);2*x(2)];
gceq = [1;

end

The unitdiskb function incorrectly calculates gradient of the constraint function:

function [c ceqg gc gceq] = unitdiskb (x)

c =x(1)"2 + x(2)"2 - 1;

ceq = [ 17

if nargout > 2
gc = [x(1l);x(2)]; % Gradient incorrect: off by a factor of 2
gceq = [];

end
Checking Derivatives at the Command Line

1 Set the options to use the interior-point algorithm, gradient of objective and
constraint functions, and the CheckGradients option:

o)

% For reproducibility--CheckGradients randomly perturbs the initial point
rng (0, 'twister');
options = optimoptions (@fmincon, 'Algorithm', 'interior-point', ...
'CheckGradients', true, 'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradien
2 Solve the minimization with fmincon using the erroneous unitdiskb constraint
function:

[x fval exitflag output] = fmincon (@Grosenboth, ...
[-1;21,101,01,01,01,[1,[],@unitdiskb,options);

Derivative Check Information

Objective function derivatives:
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Maximum relative difference between user-supplied
and finite-difference derivatives = 1.84768e-008.

Nonlinear inequality constraint derivatives:

Maximum relative difference between user-supplied

and finite-difference derivatives = 1.

User-supplied constraint derivative element (2,1): 1.99838
Finite-difference constraint derivative element (2,1): 3.99675

Error using validateFirstDerivatives

Derivative Check failed:

User-supplied and forward finite-difference derivatives
do not match within 1e-006 relative tolerance.

Error in fmincon at 805
validateFirstDerivatives (funfcn,confcn, X,

The constraint function does not match the calculated gradient, encouraging you to
check the function for an error.

Replace the unitdiskb constraint function with unitdisk2 and run the
minimization again:

[x fval exitflag output] = fmincon (@Grosenboth, ...
[-1;21,01,01,01,01,01,[],@unitdisk2,options);

Derivative Check Information

Objective function derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.28553e-008.

Nonlinear inequality constraint derivatives:
Maximum relative difference between user-supplied

and finite-difference derivatives = 1.46443e-008.

Derivative Check successfully passed.

Local minimum found that satisfies the constraints...
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Checking Derivatives with the Optimization App

Note The Optimization app warns that it will be removed in a future release.

To set up the example using correct derivative functions, but starting from [0 0], using
the Optimization app:

1 Launch the Optimization app by entering optimtool at the command line.
2 Set the Problem Setup and Results pane to match the following figure:

Problem Setup and Results

Solver: frnincon - Constrained nonlinear minimization v:
Algorithm: Interior point v:
Problem
Objective function: | @rosenboth -
Derivatives: Gradient supplied v:
Start point: [0o]

Constraints;

Linear inequalities: A b
Linear equalities: Aeg: beg:
Bounds: Lower Uppen

Monlinear constraint function: | @ unitdisk?

Derivatives: Gradient supplied -

3 Set the Options pane to match the following figure:
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[ =l User-supplied derivatives

Validate user-supplied derivatives

Hessian sparsity pattern: @) Use default: sparse{ones(numberOfVariables))
Specify:

Hessian multiply function: @ Use default: No multiply function

Specify:

=l Approximated derivatives

Finite differences f(x + r*x) - fx)

Type: :forwa rd differences > |

Relative perturbation vector i @ Use default: sqri(eps)*ones(numberOfVariables,1)
() Specify:

Minimum perturbation |r*x): @ Use default: 0
() Specify:

Maximum perturbation |r*x|: @ Use default: Inf
() Specify:

[] Evaluate in parallel

4  Press the Start button under Run solver and view results.

The output screen displays
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Pause Stop
Current teration; Clear Results

Optimization running.

Error running optimization.

Derivative Check failed,

IIser-supplied and forward finite-difference derivatives do not match within

1e-006 relative tolerance,

The forward finite difference approximation is inaccurate enough near [0 0] that

the derivative check fails.
5 To use the more accurate central differences, select central differences in the

Approximated derivatives > Type pane:
=l Approximated derivatives ]

Finite differences f(x + rx) - fx - r_*x] _
Type: icentral differences |-, P
| L J

Relative perturbation vector 1 @ Use default: eps*(1/3)*ones(numberOfVariables,1)

N Srmaeife
6 Click Run solver and view results > Clear Results, then Start. This time the
derivative check is successful:

Pause Stop
Current iteration: |24 Clear Results

Optimization running.
Objective function value: 0,0456743247573765
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint
tolerance,
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The derivative check also succeeds when you select the initial point [-1 2], or most
random points.
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